Расчет и проектирование болтового соединения

Сравнение сварки и других способов соединения металла

Рассмотрим преимущества и недостатки склейки, пайки и заклёпывания

Однозначно, сварка является одним из наиболее распространённых способов создания соединения. Но для того, чтобы понять, как она снискала себе такую популярность, нужно сравнить её с другими способами-«конкурентами»:

Склейка

Склейка может применяться в конструкциях, для которых вообще не допускаются никакие тепловложения (наиболее часто такими являются трудносвариваемые металлы, такие, как титан или магний). К недостаткам можно отнести:

  • необходимость качественной подготовки поверхностей
  • подгонка соединения под нахлёсточный тип
  • малая прочность, по сравнению со сваркой
  • невозможность работы на разрыв (клееные соединения показывают лучшие результаты при работе на смещение)

Могут использоваться вместе с заклёпками (заклёпочно-клееные соединения) и сваркой (клее-сварные точечные соединения).

Пайка

Процесс пайки очень похож на сварку, часто сварочные аппараты подходят и для пайки. Отличие заключается в том, что при пайке плавится только присадочный материал, без расплавления основного металла. Как следствие — соединение не молекулярное, а капиллярное, а значит — менее прочное. Чтобы сильно не усложнять, рассмотрим выбор применения сварки и пайки на примере велосипедов.

Типичное использование Downhill велосипеда

Для крепких алюминиевых downhill, freeride, 4cross и прочих спортивных велосипедов применяют сварку, поскольку для них в первую очередь важна прочность сварных швов, ведь если на Downhill трассе шов треснет, то велосипедисту не поздоровится.

Рамы, в большинстве, делаются из алюминиевых сплавов, поэтому проблем с их сваркой, при наличии качественного и настроенного оборудования, не возникает.

Сварной шов (Алюминий 6061)

А вот относительно велосипедов, предназначенных для шоссе, треков и скоростных гонок, действуют совершенно другие законы. В погоне за легкостью, производители пытаются максимально уменьшить толщину трубок, с которых состоит рама. За счет этого крайне страдает теплоемкость. Проще говоря – при сварке они очень быстро треснут и потеряют геометрию. Раньше рамы делали с легированных сталей, которые и так тяжело свариваются, даже не смотря на маленькую толщину. Поэтому все рамы создавались посредством пайки, что позволяло значительно уменьшить тепловложение и увеличить упругость шва (что крайне полезно для велосипедов, у которых, фактически, нет подвески). Но за это приходится расплачиваться ухудшенной прочностью и худшими механическими характеристиками шва, по сравнению со сваркой. Сейчас же, всё больше рам изготавливают из карбона, поэтому в них не применяется вовсе никаких процессов образования соединения.

Паяное соединение шоссейной рамы

Заклепывание

Постепенно, шаг за шагом, сварка вытесняла заклепки, как способ образования неразъёмных соединений, но всё же, они ещё применяются, так в чем же секрет?

Не смотря на ограничения по типу наносимого шва (только внахлёст), проблем с долговечностью

(очень часто заклёпки попросту расшатываются), необходимости предварительной подготовки (сверление отверстий) заклепывание находит свое распространение в мостостроении и авиастроении. Обусловлено это, в первую очередь, тем, что заклепочные соединение не имеют усталостной потери прочности и, как следствие — безопаснее для конструкции. К тому же, в авиастроении очень часто применяют металлы с крайне плохой свариваемостью, а для всего корпуса самолета обеспечивать контролированный подогрев и остывание затруднительно.

Стоит заметить, что во многих бытовых процессах, таких, как соединения тонких листов внахлест, кузовные автомобильные работы, точечная сварка (в особенности споттеры) показывает лучшие результаты в этих отраслях, чем заклепки, поэтому находит всё большее распространение.

источник

Расчет болтовых соединений, нагруженных осевой силой

При расчете конструкции прилагаемые нагрузки и используемый материал для резьбового соединения обычно известны, а требуется установить номинальный диаметр d резьбы болта и (или) число болтов z.

Поэтому расчет болтового соединения заключается в определении по прочности требуемого диаметра резьбы или числа болтов.

Рис. 1. Резьбовые соединения без предварительного напряжения затяжки

Резьбовые соединения без предварительного напряжения затяжки, нагруженные только осевой силой, например болт для подвески грузовой скобы (рис. 1; а, б) или хвостовик грузового крюка (рис. 1, в), рассчитывают только на растяжение по формуле:

где Fа – осевая нагрузка, эквивалентная продольной силе; z – число болтов;

Отсюда получаем (мм):

Пример. Грузоподъемная сила крана (рис. 1, в): а) G = 50 кН; б) G = 35 кН. Определить диаметр нарезанной части хвостовика крюка, изготовленного из стали СтЗ.

Вычисление

Хвостовик крюка рассматривается как незатянутый болт, работающий на растяжение. Для стали СтЗ, σт = 235…216 МПа, принимаем σт = 225 МПа.

При расчете резьбовых соединений, применяемых в подъемном оборудовании, допускаемые значения коэффициента запаса прочности = 1,5…2, рекомендованные для статических нагрузок в общем машиностроении, необходимо увеличить в два раза.

Принимая для резьбы крюка крана = 4, получаем:

При Fa = G, z = 1 внутренний диаметр резьбы хвостовика (мм):

Принимаем d=39 мм, р=4 мм. Получаем:

1.1. Резьбовые крепежные соединения с предварительным напряжением затяжки

Затяжку болтов, нагруженных осевой силой, с предварительным напряжением затяжки, обеспечивающих нераскрытие стыка или герметичность соединения, например, крепление крышек резервуаров под давлением жидкости или газа, учитывают кроме kзат=1,3 коэффициентом нагрузки K. Значение K зависит от многих факторов: характера нагрузки, материала и формы прокладок, шероховатости поверхности и числа поверхностей стыка, податливости болта – его деформировании под нагрузкой (с увеличением податливости болта и снижением податливости деталей уменьшается приращение нагрузки болта) и т. п. При практическом расчете таких соединений используют формулу:

принимая следующие значения коэффициента нагрузки К по условию нераскрытия стыка:

K = 1,45…2,3 при постоянной нагрузке; K = 2,7…4,3 при переменной нагрузке;

К = 1,5.. .2,8 по условию герметичности соединения при мягкой прокладке (войлок, резина);

К = 2,2.. .3,8 при металлической фасонной прокладке; К = 3,2…5,3 при металлической плоской прокладке.

Диаметр болта определяют при условии, что

где

Пример. Крышка подшипника червячного редуктора крепится к корпусу шестью винтами (рис. 2). Подобрать винты из стали СтЗ, [σр] = 115 МПа, если Fа = 4,5 кН.

Рис. 2. Подшипниковый узел червячного редуктора

Вычисление.

Винты (болты), прикрепляющие крышку к корпусу подшипника, должны быть затянуты в процессе сборки для обеспечения герметичности подшипникового узла. Помимо усилия затяжки винты воспринимают осевую нагрузку Fа.

Между корпусом редуктора и крышкой подшипника устанавливаем прокладку из технического картона, при этом К = 2,1 для мягкой прокладки; для метрической резьбы kзат = 1,3.

Расчет таких винтов ведем при условии, что Fa = Fз:

Принимаем 6 мм (М6), с учетом риска разрушения винтов М6, при затяжке следует принять винты М8.

Болтовое соединение металлоконструкций

Болтовое соединение – один из самых лучших вариантов крепления, который упрощает сборку и сокращает продолжительность монтажных работ. Не поэтому ли 95 % приходится именно на данный тип соединения?

В зависимости от конструктивных решений и величины нагрузок соединение металлоконструкций болтами может выполняться на основе метизов грубой, нормальной и повышенной точности. Болтовые отверстия проделываются диаметром больше, чем диаметр болта на 2-3 мм

Но при такой технологии монтажа увеличивается риск деформации соединений, именно поэтому так важно обеспечить точность совпадения крепежных отверстий металлоконструкций

Применение высокопрочных болтов для металлоконструкций с большой эффективностью заменяет заклепки и может применяться вместо болтов повышенной точности. К тому же, такое крепление сочетает в себе легкость установки, низкий процент деформации и высокий уровень несущей способности.

Подготовка к монтажу болтовым методом включает в себя несколько этапов:

  • подготовительный этап стыкуемых поверхностей;
  • состыковка отверстий под болты;
  • стяжка элементов стыка;
  • рассверловка отверстий для установки болтов.

Перед тем, как закрутить болт, осуществляется выверка конструкции. Длина и диаметр болтов рассчитывается с учетом особенностей проекта.

Виды болтовых соединений

Для монтажа металлоконструкций применяют несколько разновидностей болтов, к основным относят:

  • болты высокой точности из высокопрочной оцинкованной стали;
  • грубой точности — выполняемые диаметром до 20 мм из углеродистой стали;
  • повышенной точности – диаметр метизов до 48 мм, длина до 300 мм.

Крепление металлоконструкций болтами можно разделить по изготовлению:

  • внахлест;
  • с применением накладки.

При болтовом соединении важнейшими параметры считаются:

  • класс точности болтов;
  • тип исполнения;
  • параметры болта (шаг резьбы, материал изготовления, толщина и пр.).

Преимущества металлоконструкций на болтах

Поэлементная сборка металлоконструкций на болтах применима в том случае, когда сварка невозможна или конструктивные особенности проекта не предполагают данный метод монтажа.

К основным преимуществам болтового соединения можно отнести возможность многократной сборки и разборки без потери эксплуатационных качеств каркаса здания. Но помимо этого также выделяют:

  • низкую металлоемкость и простоту сборки;
  • упрощенную логистику, так как сборные МК проще транспортировать;
  • возможность быстрой замены отдельных конструкций, вышедших из строя.

Недостаток такого типа соединения заключается в геометрической ограниченности за счет того, что поверхности соединяемых конструкций должны совпадать отверстиями под болты.

Механический крепеж для тонкостенных конструкций

4.1. Особенности тонкостенных соединений

Для тонкостенных конструкций разработаны специальные виды механического крепежа. По сравнению с толстостенными соединениями (для стали — толщиной более 3 мм) поведение соединений в тонкостенных элементах характеризуется низкой плоскостной жесткостью.

Для тонкостенных конструкций применяют специальные механические крепежные изделия, такие как винты, самонарезающие и самосверлящие и «слепые» (вытяжные) заклепки. Самонарезающие винты применяют в основном для креплений типа «тонкое к тонкому» и «тонкое к толстому».

4.2. Самонарезающие и самосверлящие винты

Резьбонакатывающие или резьбонарезающие винты устанавливают в заранее просверленное или пробитое отверстие, а также в специальные пазы алюминиевых прессованных профилей. Эти винты бывают также вдобавок еще и самосверлящими, когда имеют на своем конце сверло или специальное острие (рисунок 5).

Рисунок 5 — Самонарезающие и самосверлящие винты

Смотрите подробнее: Самонарезающиеся винты в строительстве

4.3. Слепые (вытяжные) заклепки

Когда компоненты нужно соединить друг с другом, а доступ к задней стороне соединения отсутствует, то часто выходом из положения является применение так называемых «слепых» заклепок. В отечественной технической практике чаще всего применяют один из видов «слепых» заклепок, который назвали вытяжными заклепками. Для установки этих заклепок применяют соответствующий инструмент — «заклепочник», который вытягивает на себя сердечник заклепки, который своей утолщенной головкой формирует заднюю часть заклепки.

В процессе установки заклепки заклепочник сначала с усилием прижимают соединяемые части друг к другу, а потом формирует заднюю головку заклепки. При дальнейшем увеличении нагрузки хвост сердечника отрывается по заданной специальным надрезом точке. Обычно головка сердечника остается внутри тела заклепки и обеспечивает ему определенную герметизацию (рисунок 6).

Рисунок 6 — Процесс установки вытяжной заклепки

Слепые заклепки, которые подходят для алюминиевых конструкций изготавливают из аустенитной нержавеющей стали или алюминиево-магниевых сплавов. Обычно тело заклепки и сердечник изготавливают из различных алюминиевых сплавов, так как они должны выполнять различные функции. Тело заклепки должно быть достаточно мягким, чтобы сформировать головку, тогда как сердечник должен быть достаточно прочным, чтобы иметь возможность пластически деформировать тело заклепки.

Сдвиговое напряжение слепой заклепки зависит от свойств материала в плоскости сдвига. Рассчитать это напряжение не представляется возможным. Дело в том, что прочностные свойства материала тела заклепки и сердечника, а также их размеры после пластического деформирования при установке отличаются от свойств материала в состоянии поставки. Поэтому, чаще всего прочность заклепок определяют экспериментально для каждого отдельного проектного решения.

Cоединения в металлических конструкциях

Соединения в конструкциях служат для передачи усилий от одного элемента к другому. Например, в несущих стальных конструкциях применяются сварные, болтовые и заклепочные соединения. В ранние периоды применения стальных конструкций в строительстве основными крепежными изделиями были заклепки. Давно было известно, что заклепки, которые устанавливали горячими, обычно создавали на соединение сжимающие осевые усилия. Однако, это осевое усилие нельзя было контролировать и его величина могла значительно меняться от заклепки к заклепке. Поэтому это осевое усилие нельзя было оценивать и регламентировать при проектировании.

В 1930-е годы впервые было предложено применять в несущих стальных конструкциях вместо заклепок высокопрочные стальные болты. Было установлено, что такие болты можно затягивать достаточно сильно, чтобы предотвратить проскальзывание в конструкционных соединениях — то, что обеспечивали «горячие» стальные заклепки. В 1970-е годы применение предварительно нагруженных высокопрочных болтов в стальных соединениях без проскальзывания вместо заклепок стало широко применяться во всем мире .

В алюминиевых конструкциях при проектировании соединений приходится принимать во внимание ограниченную прочность и пластичность конструкционных алюминиевых сплавов. Для болтовых соединений с участием сил трения на передачу усилий через соединение могут негативно влиять релаксационные процессы, которые происходят в алюминии

К тому же, в алюминиевых конструкциях обычно применяются болты из нержавеющих сталей, а не высокопрочные болты из углеродистых и легированных сталей, чтобы избежать риска коррозии .

Соединения тонкостенных конструкций — стальных и алюминиевых — имеют свои особенности по сравнению с толстостенными .

Расчет длины болта и подбор деталей соединения

⇐ ПредыдущаяСтр 4 из 5Следующая ⇒

Длину болта (длину стержня до головки) определяют по формуле:

l > H1 + H2 +S + m + D ,

где Н1и H2 — толщины соединяемых деталей,мм (по варианту задания);

S — толщина шайбы, мм (таблица 5); m — высотагайки, мм (таблица 10);

D — свободный конец болта, выступающийиз гайки, мм (см. рисунок 16)

D = (2…3)∙Р, где Р — крупный шаг резьбы, мм (по таблице 8).

Полученное число сравнивают с рядом длин болтов (таблица 9) и принимают ближайшую стандартную длину. Из этой же таблицы выбирают длину резьбы b на стержне. Все остальные размеры болта выбирают из таблицы 8, шайбыи гайки из таблиц 10 и 11.

Пример расчета длины болтас номинальным диаметром резьбы d= 27 мм и толщиной соединяемых деталей Н1 = H2 =22 мм.

Заданному диаметру метрической резьбы (М27) соответствует: крупный шаг Р= 3 мм (таблица 2); высота гайкиm = 22 мм (таблица 4); толщина шайбы S = 4 мм (таблица 5); длина свободного конца D= (2…3)∙3 = 6 … 9 мм.

Подставляем данные значения в формулу расчета длины болта:

l >22+22+4+22+6…22+22+4+22+9 = 76…79 мм

Из таблицы 3 подбирается ближайшая стандартная длина болта l = 80 мм и длина резьбы b = 60 мм.

Изображения крепёжных деталей в соединении

Согласно ГОСТ 2.315-68 различают конструктивное(рисунок 15), упрощенное (рисунок 16) и условное(рисунок 17) изображения болтового соединения.

Упрощенное изображение применяется на сборочных чертежах, на нём не показывают фаски, зазор между стержнем болта и отверстием, резьбу наносят по всей длине стержня, на виде сверху не указывается внутренний диаметр резьбы.

Упрощенное изображение вычерчивают по условно принятым соотношениям в зависимости от номинального диаметра резьбы d, необходимые соотношения показаны на рисунке 16.

На чертеже упрощенного изображения необходимо поставить размеры (см. рисунок 9) Ø номинальный диаметр с буквенным обозначением метрической резьбы — М, Ø стандартную длину болта l — размер до головки болта, Øтолщину соединяемых деталей Н1и Н2.

Условное изображение используют в том случае, если диаметр стержня крепёжной детали менее или равен 2мм. На рисунке 17 показано условное изображение болтового соединения в разрезе по ГОСТ 2.315-68.

Таблица 8— Болты с шестигранной головкой класса точности В

по ГОСТ 7798-70*

В миллиметрах

Номинальный диаметр резьбы d Шаг резьбы Р Диаметр стержня d1 Размер «под ключ» S Высота головки К Диаметр описанной окружности е (не менее) Радиус под головкой R (не менее) dP
крупный мелкий
(22) (27) 2,5 2,5 3,0 3,0 1,5 1,5 2,0 2,0 12,5 14,0 15,0 17,0 33,0 35,0 39,6 45,2 0,8 0,8 0,8 1,0
Примечания: 1 Размеры болтов, заключенные в скобки, применять не рекомендуется. 2 Радиус под головкой R по ГОСТ 24670-81. 3 dP по ГОСТ 12414-94.

Таблица 9Длины болтов с шестигранной головкой класса точности В по ГОСТ 7798-70*

В миллиметрах

Длина болта Номинальный диаметр резьбы d
(22) (27)
в в в в
X X X
X X
X
(85)
Приме ч а н и я: 1 Болты с размерами длин, заключенными в скобки, применять не рекомендуется. 2 Знаком «X” отмечены болты с резьбой на всей длине стержня.

Пример условного обозначения

болта с шестигранной головкой нормальной точности исполнения 1 (не указы-вается), с диаметром резьбы d=20мм с крупным шагом Р=2,5мм, длиной болта l= 60мм, из материала подгруппы 00, без покрытия, по ГОСТ 7798-70*

Болт М20х60 ГОСТ 7798-70

Таблица 10Гайки шестигранные класса точности В по ГОСТ 5915-70*

Номинальный диаметр резьбы d (22) (27)
Шаг резьбы P Крупный 2,5 2,5 3,0 3,0
Мелкий 1,5 1,5 2,0 2,0
Размер «под ключ» S 30,0 32,0 36,0 41,0
Диаметр описанной окруж­ности e , не менее 33,3 35,0 39,6 45,2
Высота m 16,0 18,0 19,0 22,0
da не менее 20,0 22,0 24,0 27,0
не более 21,6 23,8 25,9 29,2
dw, не менее 27,7 29,5 33,2 38,0
Примечание: размеры гаек, заключенные в скобки, применять не рекомендуется.

В миллиметрах

Пример условного обозначения

шестигранной гайки исполнения 1 (не указывается), нормальной точности с диаметром резьбы d=16мм, с крупным шагом Р=2,0мм,с полем допуска 7Н (не указывается), без покрытия, по ГОСТ 5915-70* Гайка М16 ГОСТ 5915-70 То же, исполнения 2,мелким шагом Р=1,5мм, с полем допуска 6Н, класса прочности 12, из стали марки 40Х, с покрытием 01 толщиной 6мкм: Гайка 2M16xl,5-6H.12.40X.016 ГОСТ 5915-70

Таблица 11 Шайбы класса точности А по ГОСТ 11371-78*

Исполнение 1 В миллиметрах

Диаметр резьбы крепежной детали d1 d2 S

Пример условного обозначения

шайбы исполнения 1 класса точности А для крепежной детали с диаметром резьбы d = 16 мм, без покрытия:Шайба А.16 ГОСТ 11371-78 ⇐ Предыдущая4Следующая ⇒

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

4.2. Сборка соединений на высокопрочных болтах при необходимости полной разборки соединений

При необходимости полной разборки
соединений следует снять проектную нагрузку по специально разработанному
проекту и восстановить узел по следующей технологии:

4.2.1. Технологический процесс
сборки соединений предусматривает:

— осмотр конструкций и проверку
их соответствия требованиям проекта и главы СНиП III-18-75 (в части точности изготовления конструкций);

— совмещение отверстий и фиксацию
в проектном положении элементов и деталей соединения с помощью монтажных пробок
(10 % от числа отверстий, но не менее 2 шт.);

— установку в свободные от пробок
отверстия высокопрочных болтов;

— проверку геометрических
размеров собранных конструкций;

— плотную стяжку пакета;

— натяжение поставленных
высокопрочных болтов на усилие, предусмотренное проектом;

— извлечение пробок, постановку в
освободившиеся отверстия высокопрочных болтов и натяжение их до проектного
усилия.

4.2.2. Перепад толщин
перекрываемых накладками элементов, определяемый до постановки накладок с
помощью линейки и щупа, не должен превышать 0,5 мм.

4.2.3. При перепаде плоскостей
соединяемых деталей от 0,5 до 3 мм для обеспечения плавного изгиба накладки
кромку выступающей детали необходимо сгладить наждачным камнем на расстоянии до
30 мм от обреза детали с уклоном не круче 1:10. При перепаде плоскостей более 3
мм следует применять прокладки. Применение прокладок должно быть — согласовано
с проектной организацией.

4.2.4. Длины применяемых болтов
подбираются в зависимости от толщины — пакета ( Приложение 2).

4.2.5. При рассверловке отверстий
в элементах с обработанными поверхностями не должны применяться охлаждающие
жидкости, содержащие масло.

4.2.6. Сборку соединений следует
производить сразу на высокопрочных болтах и пробках. Применение других болтов в
качестве сборочных запрещается.

4.2.7. Каждый болт
устанавливается в соединение с двумя высокопрочными шайбами (одна ставится под
головку болта, другая — под гайку).

4.2.8. Гайки, затянутые на
проектное усилие, ничем дополнительно не закрепляются.

4.2.9. В момент установки
высокопрочных болтов гайки должны свободно (от руки) наворачиваться по резьбе.
В противном случае гайку или болт следует заменить, а отбракованные болты и
гайки отправить на повторную подготовку.

Точность болтовых соединений.

Болты грубой (класс C) и нормальной (класс B) точности отличаются допусками на отклонение диаметра от номинала. Для болтов грубой точности это 1 мм, а нормальной – 0,52 мм при диаметре до 30 мм.

Болты грубой и нормальной точности применяются в условиях монтажа. Болты этих классов точности ставят в отверстия, образованные продавливанием или сверлением в отдельных элементах и диаметр этих отверстий должен быть на 2-3 мм больше диаметра болта.

Разница диаметров болта и отверстия облегчает посадку болта и упрощает создание соединения и это большое преимущество использования таких болтов. Однако, неполное совпадение осей отверстий в отдельных элементах металлоконструкций и болтов не позволяет добиться плотной посадки болта в отверстии.

Неплотность посадки болта в отверстии повышает вероятность деформирования такого болтового соединения на сдвиг и увеличивает неравномерность работы отдельных болтов в соединении. Поэтому болты грубой и нормальной точности не могут быть использованы в ответственных соединениях, работающих на сдвиг, а только лишь как крепежные элементы конструкций или в случаях, когда основная нагрузка происходит от растяжения.

Болтами повышенной (класс A) точности соединяют элементы металлоконструкций, отверстия в которых просверлены на проектный диаметр в собранном виде или продавлены по кондукторам в отдельных элементах или деталях, или просверлены на меньший диаметр с последующей рассверловкой до проектного диаметра в собранных элементах.

Диаметры таких отверстий не должны отличаться от диаметра болта более чем на 0,3 мм. Плюсовой допуск для диаметра болта и минусовой для отверстия не разрешается. Гладкая часть болта без резьбы обтачивается до строго цилиндрической формы.

Особенности соединения «Болт-гайка»

Совершить болтовое соединение можно с помощью стержневого элемента: болта, винта, шпильки и т.п. Потому невозможно создать крепление разъемного типа без того, чтобы купить крепежные изделия, не подобрав под оптимальные условия для решения конкретно поставленной задачи.

Болтовое соединение стало использоваться еще во времена становления древних цивилизаций. С тех пор оно стало настолько распространено, что сейчас невозможно представить ни одну конструкцию, в которой бы не было крепления подобного рода. Однако существуют случаи, в которых использование соединения деталей с помощью болта не рационально. Потому перед выбором способа соединения деталей следует ознакомиться с достоинствами и недостатками этого типа сопряжения элементов.

Преимущества болтового соединения

  1. Разъемность. В отличие от сварки, болтовое соединение имеет разъемный характер. Это удобно для конструкций, которые периодически подвергаются разборке, например, для осмотра и внедрения новых узлов. Благодаря такой удобной особенности, болтовое соединение приобрело огромную популярность, что спровоцировало оптовую продажу крепежа различной сложности.
  2. Практичность. Существуют такие метизы, которые в ходе изготовления приобретают столь высокие прочностные и эксплуатационные характеристики, что могут спокойно заменить сварку и по сроку использования, и по надежности. На такие болты цена не столь велика, за счет чего их использование полностью окупается. А возможность периодического демонтажа позволяет сделать соединение особенно практичным.
  3. Стоимость. На этот критерий влияет множество факторов, однако, болтовое соединение все еще остается одним из наиболее эффективных и недорогих вариантов сопряжения поверхностей друг с другом.
  4. Большое разнообразие видов, посмотреть которые вы можете на сайте. В зависимости от специфики эксплуатации болты могут быть общего назначения и специализированными. Они отличаются видом и качеством сырья, присутствием защитного слоя, конструкционными особенностями и иным параметрам. Вы можете купить болты в Украине, заказав метизы различного вида, материала изготовления, наличия покрытия и пр.

Недостатки болтового соединения

  1. Необходимость использовать несколько метизов. Из-за этой особенности болтовое соединение может получиться достаточно массивным, что негативно сказывается на массогабаритных особенностях всей конструкции. Чтобы избежать подобного рода неприятностей, нередко прибегают к использованию соединения подобного рода, но не требующих использования гаек — винтовое. В этом заключается основное отличие болта от винта — в необходимости закрепления соединения гайкой.
  2. Необходимость корректного подбора. Болтовое соединение создается с помощью болта, гайки, иногда шайбы. Если метизы будут подобраны неправильно, это скажется на сроке эксплуатации всего сооружения.

Болтовое соединение — это удобный, быстрый и надежный способ скрепления сопрягаемых поверхностей. Его эксплуатация может производиться десятилетиями. Используя этот вид крепежа, вы сможете решить любую технологическую, производственную, хозяйственную и даже дизайнерскую задачу, вложив минимум средств и усилий.

Підписуйтесь на наші канали в Telegram  та  Viber

Работа болта в конструкции и его качество

Работа болта в ответственной конструкции предполагает его сопротивление типичным нагрузкам и усилиям, например:

1 Срезу

2 смятию

3 трыву головки

4 растяжению

5 разрушению резьбы.

Наиболее предпочтительные условия работы болта заключаются в том, чтобы он противостоял только растягивающим усилиям, наиболее естественным для его конструкции и формы. В узлах и изделиях, подвергающихся реальным эксплуатационным нагрузкам, обеспечить такие условия удаётся нечасто. Крепёжные изделия с резьбой на практике должны противостоять самым невыгодным и опасным сочетаниям нагрузок.

Полноценный расчёт и проектирование болтового соединения или узла состоят не только в оценке самого болта, его шайб и гаек, но и в правильной конструкции всех соединяемых деталей

Очень важно, к примеру, обеспечить отсутствие концентраторов напряжений в зоне болтового соединения — вырезов, отверстий, изменений формы и толщины деталей, многих других особенностей

Правильно созданный узел болтового крепления — хорошо продуманный комплекс элементов, выполняющих свою работу с полной загрузкой. Именно для такого продуманного конструктивного комплекса можно осуществить наиболее точный выбор болтов.

Соединительные и крепёжные элементы с резьбой — болты, винты и шпильки представляют собой широкий ассортимент изделий с различными параметрами:

  • по размерам
  • по виду резьбы
  • по материалам
  • по технологии изготовления.

Все эти изделия изготавливают в соответствии со стандартами, регламентирующими их качества. Оценку качества и состояние болтов оценивают в соответствии с этими стандартами.

Наиболее распространены болты, изготавливаемые методами холодной и горячей штамповки. Уникальные и специальные болты могут быть изготовлены индивидуально, токарной и фрезерной обработкой. Решающее значение для достижения регламентируемого нормами качества играет термомобработка.

Контроль качества болтов выполняется в процессе производства этих изделий до момента применения в дело. Возможна оценка состояния болта, работающего в составе узла или конструкции. Если болт извлечён из ответственного узла или детали, то его повторное использование в том же месте обычно не допускается. Проверку качества таких демонтированных крепёжных изделий осуществляют для пополнения объёмов практической информации, при расследовании аварий и в других аналогичных случаях.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий