Бром

Физико-химические свойства

Бромистый водород — бесцветный газ при комнатной температуре с кислым и раздражающим запахом. Соединение стабильно, но постепенно темнеет при воздействии воздуха или света, как показано на рисунке 2 (Национальный центр биотехнологической информации, S.F.).

Он имеет молекулярную массу 80,91 г / моль и плотность 3,307 г / л, что делает его тяжелее воздуха. Газ конденсируется с образованием бесцветной жидкости с температурой кипения -66,73 градусов по Цельсию..

Продолжая охлаждаться, жидкость затвердевает, получая белые кристаллы, температура плавления которых составляет -86,82 градуса Цельсия с плотностью 2,603 ​​г / мл (Egon Wiberg, 2001). Внешний вид этих кристаллов иллюстрируется на фиг.3.

Расстояние соединения между бромом и водородом составляет 1,414 ангстрем, а его энергия диссоциации составляет 362,5 кДж / моль..

Бромистый водород более растворим в воде, чем хлористый водород, он способен растворять 221 г в 100 мл воды при температуре 0 градусов Цельсия, что эквивалентно объему 612 литров этого газа на каждый литр воды. Он также растворим в спирте и других органических растворителях..

В водном растворе (бромистоводородной кислоте) кислотные свойства HBr являются доминирующими (как в случае HF и HCl), и в связи водород-галоген он слабее в случае бромистого водорода, чем в хлористый водород.

Поэтому, если хлор пропускают через бромистый водород, наблюдается образование коричневых паров, характерных для молекулярного брома. Это объясняет следующая реакция:

2HBr + Cl2 → 2HCl + Br2

Это свидетельствует о том, что бромистый водород является более сильным восстановителем, чем хлористый водород, и что хлористый водород является лучшим окислителем.

Бромистый водород — сильная безводная кислота (без воды). Быстро и экзотермически реагирует с основаниями всех типов (включая амины и амиды).

Экзотермически реагирует с карбонатами (включая известняк и строительные материалы, содержащие известняк) и гидрокарбонатами с образованием углекислого газа.

Реагирует с сульфидами, карбидами, боридами и фосфидами с образованием токсичных или легковоспламеняющихся газов.

Реагирует со многими металлами (включая алюминий, цинк, кальций, магний, железо, олово и все щелочные металлы) с образованием легковоспламеняющегося газообразного водорода.

Бурно ответить с:

  • уксусный ангидрид
  • 2-аминоэтанол
  • гидроксид аммония
  • фосфид кальция
  • хлорсульфоновая кислота
  • 1,1-дифторэтилен
  • этилендиамин
  • полиэтиленимина
  • дымящая серная кислота
  • хлорная кислота
  • б-пропиолактон
  • оксид пропилена
  • перхлорат серебра
  • Фосфид урана (IV)
  • винилацетат
  • карбид кальция
  • карбид рубидия
  • ацетилид цезия
  • ацетилид рубидия
  • борид магния
  • сульфат ртути (II)
  • фосфид кальция
  • карбид кальция (Химическая карта данных, 2016).

Физические свойства

При обычных условиях бром — красно-бурая летучая жидкость с резким неприятным запахом, ядовит, при соприкосновении с кожей образуются ожоги. Бром — одно из двух простых веществ (и единственное из неметаллов), наряду со ртутью, которое при комнатной температуре является жидким. Плотность при 0 °C — 3,19 г/см³. Температура плавления брома — −7,2 °C, кипения — +58,6 °C, при кипении бром превращается из жидкости в буро-коричневые пары, при вдыхании раздражающие дыхательные пути. Стандартный электродный потенциал Br2/Br− в водном растворе равен +1,065 В.

Природный бром состоит из двух стабильных изотопов 79Br (50,56 %) и 81Br (49,44 %). Искусственно получены многочисленные радиоактивные изотопы брома.

Биологическое значение

2-октил 4-бром-3-оксобутаноат, соединение органотромина, обнаруженное в спинномозговой жидкости млекопитающих

В 2014 году исследование показало, что бром (в форме бромид-иона) является необходимым кофактором в ходе биосинтеза коллагена IV, делая элемент существенным в в архитектуре базальной мембраны и развитии тканей у животных. Тем не менее, не было отмечено никаких чётких симптомов или синдромов дефицита при полном удалении брома из пищи. В других биологических функциях бром может не быть необходимым, но всё же приносить пользу, особенно когда он заменяет хлор. Например, в присутствии перекиси водорода H2O2 синтезируемая эозинофилами с ионами хлорида или бромида эозинофильная пероксидаза обеспечивает мощный механизм, с помощью которого эозинофилы убивают многоклеточных паразитов (таких, как, например, нематодные черви, участвующие в филяриозе) и некоторые бактерии, такие как бактерии туберкулеза). Эозинофильная пероксидаза — это галопероксидаза, которая более эффективно использует бром, а не хлор для этой цели, производя гипобромит (бромводородную кислоту), хотя использование хлорид-иона также возможно. Хотя α-галоэфиры как правило, считаются высокореактивными и, следовательно, токсичными промежуточными продуктами в биоорганическом синтезе, млекопитающие, включая людей, кошек и крыс, по-видимому, биосинтезируют следы α-бромэфира, 2-октил-4-бром-3-оксобутаноата, которые присутствуют в их спинномозговой жидкости и, вероятно, играют пока неясную роль в возникновении быстрого сна.

Морские организмы являются основным источником броморганических соединений, и именно в этих организмах роль брома могла бы быть намного более высокой. Более 1600 таких броморганических соединений были идентифицированы к 1999 году. Наиболее распространенным является метилбромид (CH3Br), около 56 000 тонн которого синтезируется за год морскими водорослями. Эфирное масло гавайской водоросли Asparagopsis taxiformis состоит из 80% бромоформа. Большинство таких броморганических соединений в море синтезируется водорослями под действием уникального фермента, ванадийбромпероксидазы.

Химические свойства бромоводорода

1. Бромоводородная кислота при взаимодействии с водой образует сильную кислоту одноосновную. Эта реакция выглядит так:

HBr + H2O (вода) = Br- (анион брома) + H3O+ (ион гидроксония)

2. Данное вещество устойчиво к высоким температурам, однако, при 1000 градусах около 0,5% всех молекул разлагаются:

2HBr (бромоводородная кислота) = H2 (молекула водорода) + Br2 (молекула брома)

3. Рассматриваемое нами химическое соединение реагирует с различными металлами, а также их основаниями и оксидами. Примеры реакций:

2HBr + Mg (магний) = MgBr2 (бромид магния) + H2 (выделяется в виде газа)

2HBr + CaO (кальция оксид) = CaBr2 (бромид кальция) + H2O (вода)

HBr + NaOH (натрия гидроксид) = NaBr (бромид натрия) + H2O (вода)

4. Бромоводород также является восстановителем. На воздухе медленно окисляется. По этой причине его водные растворы через некоторое время окрашиваются в бурый цвет. Реакция будет такая:

4HBr (бромоводородная кислота) + O2 (молекула кислорода) = 2Br2 (молекула брома) + 2H2O (вода)

Применение

Бромоводород используют для создания (синтеза) различных органических производных брома и для приготовления бромидов различных металлов. Особенное значение имеет бромид серебра, так как он используется в производстве кинофотоматериалов.

Получение

В промышленности бромоводород получают непосредственным взаимодействием простых веществ:

H2+Br2→200−400oC,Pt2HBr{\displaystyle {\mathsf {H_{2}+Br_{2}{\xrightarrow {200-400^{o}C,Pt}}2HBr}}}

Также бромистый водород получается как побочный продукт при синтезе бромпроизводных органических соединений

В лаборатории получают гидролизом трибромида или пентабромида фосфора:

PBr3+3H2O⟶H3PO3+3HBr{\displaystyle {\mathsf {PBr_{3}+3H_{2}O\longrightarrow H_{3}PO_{3}+3HBr}}}
PBr5+4H2O⟶H3PO4+5HBr{\displaystyle {\mathsf {PBr_{5}+4H_{2}O\longrightarrow H_{3}PO_{4}+5HBr}}}

Восстановление брома несколькими способами:

3Br2+S+4H2O→100−150oCH2SO4+6HBr{\displaystyle {\mathsf {3Br_{2}+S+4H_{2}O{\xrightarrow {100-150^{o}C}}H_{2}SO_{4}+6HBr}}}
Br2+KNO2+H2O→ KNO3+2HBr{\displaystyle {\mathsf {Br_{2}+KNO_{2}+H_{2}O{\xrightarrow {\ }}KNO_{3}+2HBr}}}

Вытеснение из бромидов щелочных металлов разбавленной кислотой:

KBr+H2SO4→H2OKHSO4+HBr↑{\displaystyle {\mathsf {KBr+H_{2}SO_{4}{\xrightarrow {H_{2}O}}KHSO_{4}+HBr\uparrow }}}

Химические свойства

В свободном виде существует в виде двухатомных молекул Br2. Заметная диссоциация молекул на атомы наблюдается при температуре 800 °C и быстро возрастает при дальнейшем росте температуры. Диаметр молекулы Br2 равен 0,323 нм, межъядерное расстояние в этой молекуле — 0,228 нм.

Бром немного, но лучше других галогенов растворим в воде (3,58 г на 100 г воды при 20 °C), раствор называют бромной водой. В бромной воде протекает реакция с образованием бромоводородной и неустойчивой бромноватистой кислот:

Br2+H2O→HBr+HBrO{\displaystyle {\mathsf {Br_{2}+H_{2}O\rightarrow HBr+HBrO}}}

С большинством органических растворителей бром смешивается во всех отношениях, при этом часто происходит бромирование молекул органических растворителей.

По химической активности бром занимает промежуточное положение между хлором и иодом. При реакции брома с растворами иодидов выделяется свободный иод:

Br2+2KI→I2↓+2KBr{\displaystyle {\mathsf {Br_{2}+2KI\rightarrow I_{2}\downarrow +2KBr}}}

Напротив, при действии хлора на бромиды, находящиеся в водных растворах, выделяется свободный бром:

Cl2+2KBr→Br2+2KCl{\displaystyle {\mathsf {Cl_{2}+2KBr\rightarrow Br_{2}+2KCl}}}

При реакции брома с серой образуется S2Br2, при реакции брома с фосфором — PBr3 и PBr5. Бром реагирует также с неметаллами селеном и теллуром.

Реакция брома с водородом протекает при нагревании и приводит к образованию бромоводорода HBr. Раствор HBr в воде — это бромоводородная кислота, по силе близкая к соляной кислоте HCl. Соли бромоводородной кислоты — бромиды (NaBr, MgBr2, AlBr3 и др.). Качественная реакция на присутствие бромид-ионов в растворе — образование с ионами Ag+ светло-желтого осадка бромида серебра AgBr, практически нерастворимого в воде.

С кислородом и азотом бром непосредственно не реагирует. Бром образует большое число различных соединений с остальными галогенами. Например, со фтором бром образует неустойчивые BrF3 и BrF5, с иодом — IBr. При взаимодействии со многими металлами бром образует бромиды, например, AlBr3, CuBr2, MgBr2 и др. Устойчивы к действию брома тантал и платина, в меньшей степени — серебро, титан и свинец.

Жидкий бром легко взаимодействует с золотом, образуя трибромид золота AuBr3:

2Au+3Br2→2AuBr3{\displaystyle {\mathsf {2Au+3Br_{2}\rightarrow 2AuBr_{3}}}}

Бром — сильный окислитель, он окисляет сульфит-ион до сульфата, нитрит-ион — до нитрата и т. д.

При взаимодействии с органическими соединениями, содержащими двойную связь, бром присоединяется, давая соответствующие дибромпроизводные:

C2H4+Br2→C2H4Br2{\displaystyle {\mathsf {C_{2}H_{4}+Br_{2}\rightarrow C_{2}H_{4}Br_{2}}}}

Присоединяется бром и к органическим молекулам, в составе которых есть тройная связь. Обесцвечивание бромной воды при пропускании через неё газа или добавлении к ней жидкости свидетельствует о том, что в газе или в жидкости присутствует непредельное соединение.

При нагревании в присутствии катализатора бром реагирует с бензолом с образованием бромбензола C6H5Br (реакция замещения).

При взаимодействии брома с растворами щелочей и с растворами карбонатов натрия или калия образуются соответствующие бромиды и броматы, например:

3Br2+3Na2CO3→5NaBr+NaBrO3+3CO2{\displaystyle {\mathsf {3Br_{2}+3Na_{2}CO_{3}\rightarrow 5NaBr+NaBrO_{3}+3CO_{2}}}}

Реагирует с родановодородом

HSCN+Br2→BrCN+HBr+S↓{\displaystyle {\mathsf {HSCN+Br_{2}\rightarrow BrCN+HBr+S\downarrow }}}

Бромсодержащие кислоты

Помимо бескислородной бромоводородной кислоты HBr, бром образует ряд кислородных кислот: бромную HBrO4, бромноватую HBrO3, бромистую HBrO2, бромноватистую HBrO.

Особенности работы

При работе с бромом следует пользоваться защитной спецодеждой, противогазом, специальными перчатками. Из-за высокой химической активности и токсичности как паров брома, так и жидкого брома его следует хранить в стеклянной, плотно закупоренной толстостенной посуде. Сосуды с бромом располагают в ёмкостях с песком, который предохраняет сосуды от разрушения при встряхивании. Из-за высокой плотности брома сосуды с ним ни в коем случае нельзя брать только за горло (горло может оторваться, и тогда бром окажется на полу).

Проливы брома целесообразно посыпать карбонатом натрия:

 3Br2 + 3Na2CO3 ⟶ 5NaBr + NaBrO3 + 3CO2

либо влажной пищевой содой:

 6NaHCO3 + 3Br2 ⟶ 5NaBr + NaBrO3 + 6CO2↑ + 3H2O

Обработка и хранение

Баллоны с бромистым водородом следует хранить в прохладном и хорошо проветриваемом месте. Его обращение должно быть с адекватной вентиляцией. Хранить следует только тогда, когда температура не превышает 52 градусов по Цельсию.

Контейнеры должны быть надежно закреплены в вертикальном положении, чтобы предотвратить их падение или удары. Кроме того, установите защитный колпачок клапана, если он предусмотрен, надежно на месте вручную, а также храните заполненные и пустые контейнеры отдельно (Praxair Inc., 2016)..

При работе с продуктом под давлением должны использоваться правильно спроектированные трубы и оборудование, чтобы противостоять встречному давлению. Никогда не работайте в системе под давлением и не используйте устройство предотвращения обратного потока в трубопроводе. Газы могут вызвать быстрое удушье из-за недостатка кислорода.

Хранить и использовать с достаточной вентиляцией важно. В случае утечки закройте клапан контейнера и отключите систему безопасным и экологически безопасным способом

Затем устраните утечку. Никогда не размещайте контейнер там, где он может быть частью электрической цепи..

Кожаные защитные перчатки и обувь следует надевать при работе с баллонами. Они должны быть защищены, и для этого вы должны избегать их перетаскивания.

При перемещении цилиндра съемная крышка клапана всегда должна быть на месте. Никогда не пытайтесь поднять цилиндр за крышку, которая предназначена только для защиты клапана..

При перемещении баллонов даже на короткие расстояния используйте тележку (тележку, ручную тележку и т. Д.), Предназначенную для перевозки баллонов..

Запрещается вставлять какой-либо предмет (например, гаечный ключ, отвертку, монтировку) в отверстия в крышке, поскольку это может повредить клапан и вызвать утечку..

Раздвижной ремешок используется для снятия слишком плотных или ржавых крышек. Клапан должен открываться медленно, и если это невозможно, следует прекратить его использование и связаться с поставщиком. Конечно, клапан контейнера должен быть закрыт после каждого использования.

Этот контейнер должен оставаться закрытым, даже если он пуст. Никогда не ставьте пламя или локальное тепло непосредственно на какую-либо часть контейнера. Высокие температуры могут повредить контейнер и вызвать преждевременный выход из строя устройства для сброса давления, выпуская содержимое контейнера (praxair inc., 2016).

Химические свойства

В свободном виде существует в виде двухатомных молекул Br2. Заметная диссоциация молекул на атомы наблюдается при температуре 800 °C и быстро возрастает при дальнейшем росте температуры. Диаметр молекулы Br2 равен 0,323 нм, межъядерное расстояние в этой молекуле — 0,228 нм.

Бром немного, но лучше других галогенов растворим в воде (3,58 г на 100 г воды при 20 °C), раствор называют бромной водой. В бромной воде протекает реакция с образованием бромоводородной и неустойчивой бромноватистой кислот:

Br2+H2O→HBr+HBrO{\displaystyle {\mathsf {Br_{2}+H_{2}O\rightarrow HBr+HBrO}}}

С большинством органических растворителей бром смешивается во всех отношениях, при этом часто происходит бромирование молекул органических растворителей.

По химической активности бром занимает промежуточное положение между хлором и иодом. При реакции брома с растворами иодидов выделяется свободный иод:

Br2+2KI→I2↓+2KBr{\displaystyle {\mathsf {Br_{2}+2KI\rightarrow I_{2}\downarrow +2KBr}}}

Напротив, при действии хлора на бромиды, находящиеся в водных растворах, выделяется свободный бром:

Cl2+2KBr→Br2+2KCl{\displaystyle {\mathsf {Cl_{2}+2KBr\rightarrow Br_{2}+2KCl}}}

При реакции брома с серой образуется S2Br2, при реакции брома с фосфором — PBr3 и PBr5. Бром реагирует также с неметаллами селеном и теллуром.

Реакция брома с водородом протекает при нагревании и приводит к образованию бромоводорода HBr. Раствор HBr в воде — это бромоводородная кислота, по силе близкая к соляной кислоте HCl. Соли бромоводородной кислоты — бромиды (NaBr, MgBr2, AlBr3 и др.). Качественная реакция на присутствие бромид-ионов в растворе — образование с ионами Ag+ светло-желтого осадка бромида серебра AgBr, практически нерастворимого в воде.

С кислородом и азотом бром непосредственно не реагирует. Бром образует большое число различных соединений с остальными галогенами. Например, со фтором бром образует неустойчивые BrF3 и BrF5, с иодом — IBr. При взаимодействии со многими металлами бром образует бромиды, например, AlBr3, CuBr2, MgBr2 и др. Устойчивы к действию брома тантал и платина, в меньшей степени — серебро, титан и свинец.

Жидкий бром легко взаимодействует с золотом, образуя трибромид золота AuBr3:

2Au+3Br2→2AuBr3{\displaystyle {\mathsf {2Au+3Br_{2}\rightarrow 2AuBr_{3}}}}

Бром — сильный окислитель, он окисляет сульфит-ион до сульфата, нитрит-ион — до нитрата и т. д.

При взаимодействии с органическими соединениями, содержащими двойную связь, бром присоединяется, давая соответствующие дибромпроизводные:

C2H4+Br2→C2H4Br2{\displaystyle {\mathsf {C_{2}H_{4}+Br_{2}\rightarrow C_{2}H_{4}Br_{2}}}}

Присоединяется бром и к органическим молекулам, в составе которых есть тройная связь. Обесцвечивание бромной воды при пропускании через неё газа или добавлении к ней жидкости свидетельствует о том, что в газе или в жидкости присутствует непредельное соединение.

При нагревании в присутствии катализатора бром реагирует с бензолом с образованием бромбензола C6H5Br (реакция замещения).

При взаимодействии брома с растворами щелочей и с растворами карбонатов натрия или калия образуются соответствующие бромиды и броматы, например:

3Br2+3Na2CO3→5NaBr+NaBrO3+3CO2{\displaystyle {\mathsf {3Br_{2}+3Na_{2}CO_{3}\rightarrow 5NaBr+NaBrO_{3}+3CO_{2}}}}

Реагирует с родановодородом

HSCN+Br2→BrCN+HBr+S↓{\displaystyle {\mathsf {HSCN+Br_{2}\rightarrow BrCN+HBr+S\downarrow }}}

Бромсодержащие кислоты

Помимо бескислородной бромоводородной кислоты HBr, бром образует ряд кислородных кислот: бромную HBrO4, бромноватую HBrO3, бромистую HBrO2, бромноватистую HBrO.

Ароматические углеводороды

Химические и физические свойства бензола

Наличие ароматического кольца влияет на характер химических реакций. Единая 6π-система электронов устойчива, поэтому ароматическим углеводородам характерны реакции электрофильного замещения. 

Бензол – это бесцветная жидкость, имеющая резкий запах. Горит сильно коптящим пламенем. Образует с воздухом взрывчатые смеси. 

I. Реакции замещения 

Все эти реакции протекают по механизму бимолекулярного нуклеофильного замещения. 

II. Реакции присоединения

Протекают только в жестких условиях. Присоединяться способны только богатые энергией реагенты. 

  1. Гидрирование

    Идет под воздействием температуры и катализаторов в виде платины. 

  2. Галогенирование под воздействием света
  3. Окисление

    При нормальных условиях азотная кислота, хромовая кислота и др. не могут окислить бензол. Он окисляется только в жестких условиях под действием кислорода, катализатора оксида ванадия и при температуре в 450°С.

Химические и физические свойства гомологов бензола

У гомологов бензола такие же физические свойства, что и у самого бензола. Во многом и химические свойства схожи.

I. Электрофильное замещение Радикалы гомологов бензола повышают электронную плотность на кольце в орто- и параположениях. 

  1. Галогенирование в ядро

    Катализатор – хлорид алюминия.

  2. Нитрование в ядро
  3. Сульфирование в ядро
  4. Алкилирование в ядро

II. Реакции по боковой цепи

  1. Галогенирование

    Осуществляется в присутствии света. Принцип замещения схож с реакцией алканов. 

    C6H5-CH3 + Cl2 → C6H5-CH2-Cl + HCl 

  2. Окисление

    В отличие от бензола его гомологи способны вступать в реакции окисления. 

    C6H5-CH3 + → C6H5-COOH + H2O C6H5-CH2-CH3 + → C6H5-COOH + CO2

     Окисление дизамещенных гомологов происходит по такому же принципу. 

  3. Получение непредельных соединений

    Реакция проходит под действием оксида цинка. 

    C6H5-CH2-CH3 → C6H5-CH=CH2

Химические и физические свойства стирола

Стирол – это бесцветная жидкость, имеющая резкий запах. Плохо растворяется в воде, но хорошо в органических растворителях. 

I. Реакции присоединения

  1. Гидрогалогенирование

    C6H5-CH=CH2 + HCl → C6H5-C(Cl)-CH3

  2. Галогенирование

    Стирол обесцвечивает бромную воду. Реакция идет не по бензольному кольцу, а по виниловой группе. 

    C6H5-CH=CH2 + Br2 → C6H5-CH(Br)-CH2-Br

II. Полимеризация

В ходе реакции образуется полистирол – твердая стекловидная масса. 

n C6H5-CH=CH2 → (-CH2-CH-(C6H5)-)n 

При производстве полимеров активно используется стирол. На его основе создаются полистирол, пенопласт, пластики. 

Смотри также:

  • Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)
  • Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола
  • Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров

Мифы и легенды

Существует широко распространенная городская легенда о том, что в армии, местах лишения свободы и психиатрических больницах будто бы добавляют соединения брома в еду для снижения полового влечения. Происхождение этого мифа доподлинно неизвестно.

Препараты брома имеют солёный вкус и оказывают седативный (успокаивающий) и снотворный эффект.

Ни в коем случае нельзя путать «аптечный бром» (водные растворы бромида калия или натрия), который применяют при расстройствах нервной системы, и элементарный бром, который является высокотоксичным веществом с раздражающим действием. Принимать элементарный бром внутрь ни в коем случае нельзя — это яд.

Какие существуют способы получения бромоводорода

По причине высокой степени окисляемости бромоводороной кислоты, ее нельзя получить посредством воздействия серной кислоты концентрированной на бромиды металлов щелочных. Происходит следующая реакция:

2KBr (бромид калия) + 2Н2SO4 (кислота серная) = К2SO4 (калия сульфат) + SO2 (оксид серы) + Br2 (молекула брома) + 2Н2О (вода)

1. В промышленности получение кислот, таких как бромоводородная, осуществляется посредством реакции, в ходе которой взаимодействуют составляющие элементы. Например, рассматриваемое нами вещество можно получить следующим способом:

H2 (молекула водорода) + Br2 (молекула брома) = 2HBr (бромоводородная кислота)

Эта реакция осуществима при температуре от 200 до 400 градусов.

2. Также возможно получение бромоводородной кислоты и в лабораторных условиях несколькими способами.

— посредством гидролиза пентабромида фосфора или трибромида:

PBr3 (трибромид) + 3H2O (три молекулы воды) = H3PO3 (кислота фосфорная) + 3HBr (бромоводородная кислота, формула химическая)

PBr5 (пентабромид) + 4H2O (четыре молекулы воды) = H3PO4 (кислота фосфорная) + 5HBr (бромоводород)

— путем восстановления брома:

3Br2 (три молекулы брома) + S (сера) + 4H2O (вода) = (реакция возможна при температуре, равной 100-150 градусов) H2SO4 (серная кислота) + 6HBr (бромоводород)

3Br2 (три молекулы брома) + KNO2 (калия нитрит) + 4H2O (вода) = KNO3 (нитрат калия) + 2HBr (бромоводород)

— посредством вытеснения разбавленной кислотой щелочных металлов из бромидов:

KBr (бромистый калий) + H2SO4 (серная кислота) = KHSO4 (калия гидросульфат) + HBr (выделяется в виде газа)

3. Как побочный продукт бромистый водород можно получить при синтезе органических бромопроизводных соединений.

Химические свойства

Водный раствор бромистого водорода образует сильную одноосновную кислоту:

HBr+H2O⇄Br−+H3O+  pK=−9{\displaystyle {\mathsf {HBr+H_{2}O\rightleftarrows Br^{-}+H_{3}O^{+}\ \ p{\mathit {K}}=-9}}}

Термически HBr очень устойчив, при температуре 1000 °C разлагаются около 0,5 % молекул:

2HBr⇄H2+Br2{\displaystyle {\mathsf {2HBr\rightleftarrows H_{2}+Br_{2}}}}

Как кислота реагирует с металлами, их оксидами, основаниями:

2HBr+Mg→ MgBr2+H2↑{\displaystyle {\mathsf {2HBr+Mg{\xrightarrow {\ }}MgBr_{2}+H_{2}\uparrow }}}
2HBr+CaO→ CaBr2+H2O{\displaystyle {\mathsf {2HBr+CaO{\xrightarrow {\ }}CaBr_{2}+H_{2}O}}}
2HBr+Ba(OH)2→ BaBr2+2H2O{\displaystyle {\mathsf {2HBr+Ba(OH)_{2}{\xrightarrow {\ }}BaBr_{2}+2H_{2}O}}}

Является восстановителем, медленно окисляется на воздухе, из-за чего водные растворы со временем окрашиваются в бурый цвет:

4HBr+O2→τoC2Br2+2H2O{\displaystyle {\mathsf {4HBr+O_{2}{\xrightarrow {\tau ^{o}C}}2Br_{2}+2H_{2}O}}}
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий