Измерение момента вращения при помощи датчиков вращения

Применение

Датчики управления приводом снимают показания числа оборотов вала в АТ-, ASG-, DSG- и CVT-приводах. Это показания числа оборотов турбин и приводов в приводах AT с гидродинамическим преобразователем крутящего момента, числа оборотов первичного и вторичного шкива в CVT-приводах и числа оборотов обоих валов и приводного вала в DSG-приводах. При наличии высоких требований к динамике регулирования разгона снимаются показания числа оборотов двигателя, ожидаемые на элементе разгона.

Для оптимизации управления сцеплением и предотвращения отката автомобиля назад может потребоваться датчик для определения направления вращения. Используются как: автономные датчики, так: и модели, интегрированные в электронные модули, которые устанавливаются как: внутри привода, так: и снаружи.

Другие виды датчиков скорости: с язычковым переключателем и датчик индукционного типа

Хотя такие датчики используются намного реже ДС на эффекте Холла, на некоторых авто встречаются именно такие решения. По этой причине необходимо учитывать некоторые особенности.

  1. Датчик с язычковым переключателем подают сигналы в виде прямоугольных импульсов с циклом 40-60%, при этом переключение осуществляется от 0 до 5В или от 0 до напряжения АКБ 12В.
  2. Что касается индукционного датчика, сигнал от вращения колес похож на волновое колебание (волновой импульс). В результате напряжение изменяется с учетом скорости вращения. Сам принцип похож на работу датчика угла поворота коленвала.

Принципы измерения угла поворота робота с помощью датчика H206

Существует много способов определения угла поворота робота. Обычно для этих целей используют акселерометры или гироскопы. Но более дешевый способ, который использовали мы в нашем проекте – это установка датчиков H206 на оба колеса робота. Таким образом мы сможем узнать сколько оборотов сделало каждое колесо. На следующем рисунке показан принцип расчета угла поворота робота в соответствии с данным способом.

Когда мы только подали питание на робота предполагается что угол его поворота равен 0°. Если вращается левое колесо угол инкрементируется в отрицательную сторону, а если вращается правое колесо угол инкрементируется в положительную сторону. Для упрощения понимания рассмотрим диапазон углов от -90 до +90 как показано на выше приведенном рисунке. Поскольку оба колеса одинакового диаметра, то если одно колесо сделает один полный оборот, то робот повернется на угол 90°.

К примеру, если левое колесо сделает полный оборот (80 прерываний), то робот повернется на 90° влево. Аналогично, если правое колесо сделает полный оборот (80 прерываний), то робот повернется на -90° вправо. То есть если плата Arduino обнаружит 80 прерываний от одного колеса, то мы можем считать что робот повернулся на 90° в соответствующую сторону, поэтому для расчета углов поворота мы можем использовать формулу:

Arduino

int angle_left = (left_intr % 360) * (90/80);
int angle_right = (right_intr % 360) * (90/80);

1
2

intangle_left=(left_intr%360)*(9080);

intangle_right=(right_intr%360)*(9080);

90 в этой формуле обозначает угол, покрываемый за 80 прерываний. Мы также используем модуль по основанию 360 чтобы результирующее значение никогда не превышало 36. Когда мы рассчитаем по приведенной формуле углы поворота вправо и влево, то результирующий угол поворота мы можем найти с помощью разницы между этими углами:

Arduino

angle = angle_right — angle_left;

1 angle=angle_right-angle_left;

Принципы работы и устройство датчика скорости

Принципы работы всех транспортных средств с течением времени всерьёз улучшались. Так, механические определители скорости, основанные на анализе вращения специальных тросов, канули в лету, а на смену им пришли цифровые датчики скорости. Как работает обычный представитель подобных устройств? Крайне просто, по эффекту Холла, то есть посредством анализа электрических импульсов, поступающих от вращающегося колеса. Если быть точнее, то типовой датчик скорости автомобиля (в сокращении – ДСА) представляет собой небольшой элемент привода спидометра и располагается, как правило, в области КПП двигателя.

Сегодня принято выделять три вида датчиков:

  • язычковые;
  • индуктивные;
  • основанные на эффекте Холла (современные электронные датчики скорости).

«Холловские» идентификаторы являются наиболее используемыми в современном автомобилестроении и применяются в конструкции большинства машин. Подобный датчик измерения скорости движения машины работает на основе явления Холла, которое предполагает определение некоторых физических показателей (в нашем случае именно скорости движения) за счёт анализа частоты электромагнитных импульсов. Рассматривая принцип работы устройства более детально, стоит выделить следующие основные этапы его функционирования:

  1. Импульсный датчик скорости монтируется в привод спидометра, который отслеживает частоту вращения одного из колёс, и вместе с ним формирует единую электроцепь;
  2. Определитель скорости сделан так, что в процессе своего функционирования на 1 километр продвижения автомобиля передаёт специальному контроллеру 6004 электронных импульсов. Частота передачи импульсов пропорционально увеличивается с увеличением скорости движения машины;
  3. Анализируя данное изменение, раннее отмеченный контроллер электронным «мозгом» высчитывает точную скорость движения автомобиля в данный момент времени и передаёт полученные показатели на управляющие блоки некоторых узлов транспортного средства (инжектор, карбюратор, ГБО и т.п.), а также – водителю через спидометр. Отметим, что сопротивления датчик практически не имеет, поэтому его физическая конструкция ни капли не влияет на получаемую в итоге скорость.

Разновидности автомобильных датчиков оборотов двигателя

Есть несколько типов автомобильных измерителей вращений двигателя по принципу создания и регистрации изменений в чувствительной среде.

Индукционные (индуктивные)

Индуктивные датчики синхронизации оборотов двигателя самые простые, распространенные, дешевые, но это не уменьшает их эффективность.

Основной элемент индукционных детекторов числа вращений ДВС — катушка, намагничивающая сердечник и создающая магнитные потоки.

В следующем объяснении цифровые ссылки на рисунок ниже. Индуктивный датчик синхронизации устанавливается сразу напротив зубчатой ферромагнитной части КВ (7). На ней также есть небольшой воздушный зазор (место, где отсутствуют выступы). Датчик внутри состоит из стального намагниченного сердечника (полюсный контактный стержень, 4), с обмоткой тонкой медной, изолированной эмалью, проволокой (5), наподобие как у трансформаторов. Данный элемент связан с постоянным магнитом (1).

Алгоритм работы:

  1. Полюсный контактный штырь распространяет магнитополе, которое проходит на зубчатый вал.
  2. Зубцы задевают магнитопоток, идущий через катушку, его свойства на выступах и впадинах меняются. На первых этот рассеиваемый поток становится более концентрируемым (пучок). На вторых, наоборот, осуществляется ослабление указанного явления.
  3. Вышеуказанные трансформации индуцируют на витках обмотки выходное переменное напряжение с определенной синусоидой. Величина пропорциональная скорости и количеству оборотов (рис. 2). Амплитуда быстро растет с их повышением (от нескольких мВ до 100 В и больше). Достаточное значение образовывается, начиная с минимального числа вращений от 30/мин.

Оптические

Конструкция состоит из ИК-светодиода с установленным напротив него приемником. Между элементами — зубцы коленвала. Линия излучения пересекается этими выступами, что фиксирует приемник и отправляет соответствующий импульс на ЭБУ. Применяются реже.

Активные

Далее рассмотрим так называемые «активные» датчики вращений мотора, работающие по магнитостатическому методу. При них на амплитуду выходного импульса не влияет число оборотов, поэтому становятся доступными измерения интенсивности поворотов КВ при чрезвычайно низком количестве таковых (квазистатический мониторинг). Такие изделия намного более продвинутые, с расширенными возможностями.

Датчики числа вращений двигателей с дифференциальными детекторами Холла

На токопроводящей пластине, пропускающей в вертикальном направлении магнитную индукцию, поперечно к течению тока можно фиксировать пропорциональное его направлению, так называемое напряжение Холла.

Рисунок со схемой данного варианта выше. В таком дифдатчике ДПКВ поле создается постоянным магнитом (1). Два сенсора Холла (2 и 3) размещены между магнитом и кольцом, продуцирующим импульсы (4). В магнитопотоке происходят изменения в зависимости от того, что оказывается на нем — впадина или зубец. Разностью сигналов двух сенсоров снижается возмущение, уровень отклонений, улучшается соотношение сигнала и шума. Боковые участки сигнала могут анализироваться без оцифровки прямо на блоке управления.

Зубчатые колеса синхронизации могут быть не только ферромагнитными, но и многополюсными, где немагнитный носитель из металла снабжен кусочком специального пластика, который попеременно намагничивается. Северные и южные полюсы такого элемента выполняют роль делений.

AMR

Чувствительная часть AMR сенсоров синхронизации оборотов автомобиля сделана из магниторезистивного состава.

АМР — анизотропный магниторезистивный. Первый термин означает, что электросопротивление этого материала зависит от направленности воздействующего магнитополя. Такой сенсор установлен между магнитом и импульсным диском (аналог зубчатого, как при индуктивных сенсорах).

При вращении импульсного активного диска линии поля изменяют свои параметры, что формирует синусоидальное напряжение, усиливаемое схемой обработки данных, преобразовываемое ею в импульс прямоугольной геометрии.

GMR

В данном случае применяется инновационная технология Giant Magneto-Resistance. Такой сенсор намного чувствительнее, чем AMR — тут возможны значительные воздушные промежутки.

GMR-датчики оборотов двигателя применяются для сложных условий, высокая сенситивность создает меньше шумов, погрешностей сигнала.

Продвинутые ГМР детекторы оснащают двухпроводными портами, они же иногда встречаются в сенсорах вращения Холла.

Измерение вращения выходного вала АКПП

О датчике измерения вращения выходного вала АКПП я писал ранее, сравнивая с тем устройством, которое фиксирует скорость вращения. Сейчас поговорим о его неисправностях.

Неисправность датчика частоты вращения выходного вала определяется ошибкой P0720. ЭБУ коробки получает от прибора сигнал и решает, какую следующую скорость включить. Если от датчика не идет сигнал, то АКПП падает в аварийный режим или опытный механик диагностирует сканером ошибку 0720.

Читать

Обслуживание и замена фильтра АКПП a6gf1

Но прежде, водитель может жаловаться, что автомобиль застрял на одной скорости и не переключает передачи. Наблюдаются провалы в разгоне.

Проверка датчиков входящего и выходящего на акпп Mitsubishi FTOПроверка датчиков входящего и выходящего на акпп Mitsubishi FTO

Более подробное описание

В современном автомобилестроении наибольшее распространение получили именно приборы с эффектом Холла. Этапы функционирования в этом случае имеют следующее описание:

  • Датчики монтируют внутри приводов спидометра. После этого начинается отслеживания частоты вращения у одного из колёс. Формируется единая электрическая цепь.
  • Изучаем определитель скорости. Специальному контроллеру передают до 6004 импульсов через каждый километр пути, пока устройство функционирует. Увеличение показателя пропорциональное. Импульсы передаются с большей частотой по мере того, как увеличивается скорость движения.

Одна из особенностей датчика – практически полное отсутствие сопротивления. Итоговая скорость от конструкции не зависит.

Не составит труда разобраться с принципами работы любых современных датчиков.

Важные особенности

Следует обратить внимание, что на некоторых автомобилях датчик частоты вращения заменяет измеритель Холла: данное приспособление может передавать в главный блок управления не только сигнал о фазах механизма газораспределения, но и обороты двигателя. Если у вас именно такая ситуация, то найти прибор можно вблизи распределительного вала

В случае, когда измеритель частоты вращения коленчатого вала выйдет из строя, вы не сможете завести свой автомобиль: после доскональной проверки системы зажигания и подачи топлива, в ходе которой не будет обнаружено существенных отклонений, рекомендуется обязательно проверить работоспособность датчика оборотов.

Что еще нам нужно знать об индуктивном датчике?

Индуктивный датчик местоположения и скорости — это устройство со своей спецификой, поэтому в описании его работы используются специальные определения, такие как:

Активная зона

Эта зона означает область, в которой степень магнитного поля наиболее выражена. Сердечник расположен перед чувствительной областью датчика, где уровень концентрации магнитного поля самый высокий.

Номинальное расстояние переключения

Этот параметр считается теоретическим, поскольку он не учитывает производственные характеристики, температурный режим, уровень напряжения и другие факторы.

Рабочий диапазон

Рабочий диапазон показывает параметры, которые гарантируют эффективную и нормальную работу индуктивного датчика.

Поправочный коэффициент

Поправочный коэффициент связан с материалом, из которого сделан металлический предмет, который проверяется датчиком.

Преимущества и недостатки индуктивных датчиковКак и все другие устройства, индуктивные датчики имеют свои сильные и слабые стороны.

Среди самых больших преимуществ этого типа датчиков являются:

Простая конструкция. Конструкция индуктивных датчиков чрезвычайно проста и не содержит сложных элементов, требующих специальной конфигурации. Поэтому датчики обладают высокой степенью прочности и надежности, редко ломаются и фактически могут использоваться в течение очень длительного времени.

·Особые характеристики — характеристики индуктивных датчиков позволяют без проблем устанавливать и подключать их к частям автомобильной системы.

·Чувствительность — датчики этого типа достаточно чувствительны, что позволяет использовать их при работе с различными металлическими деталями и предметами.

Единственный недостаток заключается в том, что возможно, что на датчики могут воздействовать различные внешние факторы во время работы, и поэтому требуется обеспечить соответствующие условия, которые не могли бы помешать правильному функционированию индуктивных датчиков.

Самостоятельная замена датчика входного вала

Для того чтобы осуществить замену прибора своими руками необходимо открыть капот и произвести демонтаж воздушного фильтра. После этого к прибору будет открыто доступное пространство, необходимо отсоединить его от проводов. Осматриваем внимательно корпус, он должен быть плотно закрытым и герметичным для того чтобы внутрь не попала влага. Если корпус герметичен, то вскрываем его.

Вскрытие необходимо делать для проверки устройства и попытки его реанимирования. Для этого используется мультиметр и замеряется сопротивление и напряжение устройства. Если значения нулевые, то устройство неисправно. Также смотрим на состояние шестеренки, если заметен большой износ, то ее нужно будет заменить. Осматриваем целостность контактной группы, возможно местами она будет окислена., при необходимости произвести зачистку. Если данные действия не помогли, то следует приступать к замене на новое устройство.

После того как новый прибор будет установлен и подсоединен к автомобилю, рекомендуется сразу же использовать сканер для того чтобы прочитать существующие ошибки. Если ошибки сохраняются, то необходимо проверить целостность проводки. В большинстве случаев один из проводов может быть окислен, пробит или же отходить от места соединения, что способствует появлению ошибок.

Если сканер не обнаружил ошибок, то следует запустить двигатель автомобиля и задействовать переключение КПП, смотря на приборную панель, убедившись в верности полученных данных. После этого делаем тестовый заезд на скорости не более 35 километров в час

Во время движение обращаем внимание на то, как работает коробка передач и корректно ли набираются обороты двигателя. Если наблюдаются проблемы, то рекомендуется обратиться в специализированный центр, поскольку причина может быть не только в датчике

При возникновении указанных неисправностей, водители часто думают, что проблема заключается в автоматической коробке передач, а поскольку ее замена и ремонт дорогостоящие, то не торопятся с ремонтными работами. Хотя проблема может крыться  в датчике частоты вращения входного вала, и его своевременная замена позволит комфортно передвигаться на автомобиле. Затягивание ремонтных работ может привести к поломкам автоматической коробки передач.

Назначение датчика оборотов двигателя

К рассматриваемому прибору применяются такие названия, это датчик:

  • числа (количества) оборотов двигателя;
  • частоты вращений (поворотов) коленвала;
  • ДЧВ;
  • индуктивный;
  • синхронизации;
  • ВМТ или верхней мертвой точки поршня цилиндра — система определяет этот параметр через данный датчик, который в свою очередь отслеживает его через реперное колесо КВ (на нем есть метка, пробел зубьев). То есть определенное положение этого диска отвечает позиции поршня;
  • ДПКВ — положения (оборотов) коленвала;
  • контрольной метки;
  • фаз.

Датчик оборотов двигателя не надо путать с сенсором положения распредвала (ДПРВ). А также на авто с электронным блоком управления (ЭБУ, ЭСУД) разные наименования для детектора количества оборотов и термин «датчик положения коленвала» (КВ) применяются для одного и того же устройства. Но есть автомобили (такие модели встречаются реже) и с отдельным последним (два таких изделия часто обозначают как G28 и G4), что надо помнить. В этой статье эти названия, если нет уточнения, применяются к одному и тому же устройству, чаще всего обозначаемому аббревиатурой ДПКВ, реже ДЧВ.

На схемах силовых блоков иномарок часто детектор синхронизации обозначен как G28.

ДЧВ относится к оснащению контроля и управления двигателем, к системе подачи сигналов о его состоянии на ЭБУ.

Задачи ДПКВ:

  • синхронизация системы зажигания, впрыска горючего;
  • передача данных о поддерживаемых коленчатым валом (КВ) вращениях, о его угле поворота в конкретный момент;
  • корректное взаимодействие всех систем, функционирование всего транспортного средства.

Поломка датчика скорости

Если бы владелец авто просто не видел скорости и пробега — это пол беды. Признаки неисправности датчика скорости — это серьезные симптомы, приводящие к сбоям в работе двигателя:

  • нарушения формирования пропорций топливно-воздушной смеси;
  • неустойчивое движение автомобиля при холостых оборотах (не путать с холостым ходом на стоящем авто);
  • автомобиль может заглохнуть в движении при сбросе газа;
  • нарушения алгоритма работы автоматической коробки передач, вплоть до перехода в аварийный режим.

При наличии проблем как проверить датчик скорости в гаражных условиях? Поскольку это обычный электроприбор, он имеет определенные характеристики. Разумеется, полноценный тест со считыванием импульсов возможен лишь в движении и с подключением диагностического компьютера к порту OBD. Для этого не нужно знать, где находится датчик скорости. Просто подсоединяемся к диагностическому порту и запускаем программу, соответствующую марке вашего автомобиля. Если сканера нет, но вам известна схема подключения датчика скорости, экспресс тест можно провести с помощью мультиметра.

GMR-датчики

Усовершенствование активных датчиков скорости вращения отражено в использовании технологии GMR (ГМР) (Giant Magneto-Resistance). По причине высокой чувствительности по сравнению с датчиками AMP здесь возможны большие воздушные зазоры, за счет чего предполагаются использования в трудных сферах применения. Более высокая чувствительность производит меньше шумов фронта сигнала.

В ГМР-датчиках возможны также все двухпроводные порты, используемые ранее в датчиках скорости вращения Холла.

Понадобилось на работе контролировать обороты двигателя. Решили использовать датчик Холла. На муфту установленную на валу двигателя приклеили пару неодимовых магнитов. Для датчика Холла сделали схему на компараторе, чтобы фиксировать моменты прохождения магнита напротив датчика. Схема приведена на рис.1

Рис. 1 Принципиальная схема тахометра

Описание работы

Датчик Холла AHSS49 на каждый проход магнита, закрепленного на валу двигателя формирует импульс амплитудой около 1 вольта, со смещением относительно земляной шины на +2,5 В.

Полученный сигнал поступает на вход компаратора IC1 LM311, который формирует управляющие импульсы для выходной опто-развязки OC1 PC817, выход которой присоединяется ко входу контроллера, подтянутому через сопротивление 1-2 кОм к питанию контроллера. В промышленных контроллерах, такие резисторы предустановлены и требуется только конфигурирование входных цепей. Порог срабатывания компаратора IC1 настроен на напряжение 2,6 В. Настраивая компаратор на более высокое напряжение можно получить более узкие импульсы на выходе — это связано с тем, что импульсы на выходе датчика Холла имеют форму близкую к треугольной.

Конденсаторы С1, С2 предназначены для снижения импульсных помех и исключения ложных срабатываний компаратора.

Схема была смакетирована на самодельной монтажной плате см. рис.2 Для публикации была подготовлена разводка печатной платы см. Приложения к статье.


Рис.2 Макет схемы усиления сигнала датчика Холла

Установка датчика около муфты вала двигателя см.рис.3 Датчик Холла был установлен таким образом, чтоб при прохождении магнитов установленных на муфте они оказывались на расстоянии пимерно 5 мм напротив датчика Холла. При установке на валу двух магнитов результирующая частота на выходе платы удваивается. При установке 4 магнитов возрастает в 4 раза. Большее число магнитов устанавливается для подсчета частоты вращения низко-оборотных двигателей. Соответственно, при измерении частоты вращения двигателя результат делится на число магнитов установленных на валу двигателя.


Рис.3 Установка датчика на кронштейне вблизи муфты на валу двигателя

Выход тахометра может быть организован несколькими способами в зависимости от решаемых задач

Схема приведенная на рис. 1 при работе с промышленными контроллерами может не дать устойчивого срабатывания на каждый импульс поскольку 2 p-n перехода опто-развязки PC817 при полном открытии будут давать падение напряжения около 1 В. И, в этом случае, дискретные входы пром.контроллера выполненные на КМОП микросхемах будут срабатывать неустойчиво, в этом случае имеет смысл реализовать схему выхода на полевом N-канальном транзисторе. Вариант схемы с выходом на полевом N-канальном транзисторе приведен на рис.4 . Для управления полевым транзистором пришлось задействовать дополнительный вход контроллера (клемма Х1). В случае если входов контроллера для этого не хватает, можно использовать дополнительный источник питания + 5В, подключив его к клемме Х1. Рабочий вход (клемма Х2) замыкается полевым транзистором и сформированные импульсы поступают на вход контроллера Х2.


Рис.4 Вариант схемы с выходом на полевом N-канальном транзисторе с дополнительной гальванической развязкой

Если дополнительная гальваническая развязка выхода не нужна, можно использовать схему рис.5


Рис.5 Вариант схемы с выходом на полевом N-канальном транзисторе без дополнительной опторазвязки

Рис. 6 Осциллограмма выходного сигнала для варианта схемы см. рис. 4

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VB1 Датчик Холла AHSS49 1

В блокнот

IC1 Компаратор

LM311

1

В блокнот

OC1 Оптопара

PC817

1

В блокнот

R1, R3, R5 Резистор

1 кОм

3

В блокнот

R2, R4 Резистор

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

  • замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
  • размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
  • переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Замена, установка

При монтаже ДПКВ надо правильно выставить зазор между ним и зубчатой частью шкива. Стандартное правильное значение зазора между сердечником прибора и колесом синхронизации — 0.5–1.5 мм. Этот промежуток регулируется шайбами (прокладками) между посадочным местом сенсора и его корпусом.

Размещение датчика синхронизации оборотов с пояснениями:

Надо следить, чтобы сенсор располагался напротив отметки на колесе синхронизации с определенным углом и зазором — это самые ключевые моменты:

При снятии сенсора надо обратить внимание на правильность его расположения — возможно оно было нарушено, что стало причиной некорректности значений при рабочем изделии

Итак, акцентируем еще раз: самым важным при установке является расположение сенсора по метке с соблюдением прописанного в спецификации зазора к зубчикам реперного колеса КВ.

Калибровка

Датчик может быть исправным, но отображать скорость движения КВ, число оборотов, иные данные с погрешностями, тогда потребуется его калибровка. Процесс при индуктивных типах ДПКВ простой — зазор выставляется шайбами со значением, прописанным в инструкции. Но в некоторых автомобилях он достаточно сложный. Опишем такой пример.

ДЧВ в данном случае стоит на стыке КПП, считывает зубцы с венчика маховика. Посадочный кронштейн снабжен пазами для регулировки, позволяющие делать смещение на 7–8 мм. На последующих в примере схемах измеритель числа вращений двигателя обозначен G28.

Калибровка крайне желательная в таких ситуациях:

  • снимали коленвал;
  • монтировали неродной, другой маховик;
  • после замены блока.

При откручивании маховика от КВ калибровка неизбежная, даже несмотря на то, что кронштейн сенсора не откручивали, не говоря уже когда он снимался.

У некоторых автомобилей процесс калибровки может быть сложным со специнструментами, например, как на изображениях:

Опишем один из вариантов калибровки.

Совмещение отметок на шкиве:

Стопор (фиксатор) помещают в КВ, на место датчика G4 (тут модель с отдельными сенсорами оборотов и КВ), производится фиксация узла

При этом критически важно не подвинуть вал:

Вводят специнструмент VAG3308 в кронштейн ДПКВ и смотрят, располагается ли его торец между выступами маховика:

В нашем примере было обнаружено смещение кронштейна на около 3 мм, из-за этого промах был на пол-зуба. Для калибровки ослабили 2 болта кронштейна ДПКВ, сместили его, чтобы его торец попал между выступами.

Для калибровки необходимо ослабить два болта кронштейна датчика G28, сместить его так, чтобы «клык» попал между делениями маховика и снова завинтить крепление:

Как видим, в описанной ситуации потребуется специнструмент VAG3308 и стопор коленвала VAG3242, без них «на глаз» выставить кронштейн датчика невозможно. Но такая ситуация может быть не у всех моделей автомобилей, информацию о нюансах процедуры не составит труда найти в сети, на спецфорумах. Мы же рассмотрели процедуру для Audi 100 2.6 c датчиком оборотов ДВС G28 (v2.6/2.8).

Надо помнить то, что в паре с ДЧВ двигателя может функционировать отдельный сенсор коленвала G4 как в описанном случае (выше в 4 разделе статьи мы уже писали об этом)

Не всегда он есть, но тут он отдельный, сразу за кондиционерным компрессором, то есть важно не перепутать эти приборы

Схема расположения датчиков на моторе TDI 2,0 л 4V

Узлы с A по H на чертеже не показаны:

  1. Датчик давления 1 ОГ G450. После замены необходимо провести корректировкуснятие и установка;
  2. Датчик Холла G40 (датчик положения распределительного вала);
  3. Лямбда-зонд G39 с нагревательным элементом лямбда-зонда Z19. Снятие и установка — 50 Нм;
  4. Блок управления двигателя J623;
  5. Модули впрыска (пьезофорсунки);
  6. Позиционный датчик регулятора давления наддува G581;
  7. Редукционный клапан. Функция редукционного клапана — обеспечивать остаточное давление в обратных топливных магистралях (объём управления) ок. 10 барэто количество необходимо для работы пьезоинжекторовредукционный клапан заменять только в комплекте с обратными топливными магистралямипосле замены дать двигателю поработать две минуты на холостом ходу для удаления воздуха из топливной системыпроверка редукционного клапана;
  8. Регулировочный клапан давления топлива N276;
  9. Электромагнитный клапан ограничения давления наддува N75. Электрический разъем датчика температуры ОГ 3 G495;
  10. Электрическое штекерное соединение для датчика температуры отработавших газов 4 -G648- для датчика температуры отработавших газов 1 G235 для лямбда-зонда G39 место установки;
  11. Расходомер воздуха G70;
  12. Датчик температуры охлаждающей жидкости G62;
  13. Датчик числа оборотов двигателя G28, 4,5 Нм;
  14. Двигатель впускного коллектора с изменяемой геометрией V183 с датчиком положения впускного коллектора с изменяемой геометрией G513;
  15. Переключающий клапан радиатора системы рециркуляции ОГ N345;
  16. Насос радиатора системы рециркуляции ОГ V400;
  17. Двигатель заслонки впускного коллектора V157 с потенциометром дроссельной заслонки -G69-. Впускной коллектор — детали и узлы снять и установить;
  18. Датчик давления наддува G31 общий элемент с датчиком температуры всасываемого воздуха -G42-;
  19. Свечи накаливания. Свеча накаливания 1 Q10. Свеча накаливания 2 Q11. Свеча накаливания 3 Q12. Свеча накаливания 4 Q13;
  20. Датчик температуры топлива G81 в топливоподающей магистралим;
  21. Клапан рециркуляции ОГ N18 с потенциометром системы рециркуляции ОГ G212;
  22. Подсоединение топливной обратной магистрали к топливному фильтру;
  23. Подсоединение топливоподающей магистрали (магистраль высокого давления) к топливной рампе (энергоаккумулятор высокого давления);
  24. Топливный насос высокого давления с клапаном дозировки топлива N290 Клапан дозировки топлива -N290- не открыватьпосле замены „следует“ произвести первую заправку топливной системы (обязатель избегать работы топливной системы всухую);
  25. Датчик давления топлива G247. Снятие и установка — 70 Нм;
  26. Датчик температуры охлаждающей жидкости на выходе радиатора -G83-;
  27. Дополнительный топливный насос V393;
  28. Топливный фильтр. Топливный фильтр — детали и узлы замена топливного фильтра;
  29. Реле малой теплопроизводительности J359 и реле большой теплопроизводительности -J360- . Схемы электрооборудования, поиск неисправностей системы электрооборудования и месторасположение;
  30. Выключатель стоп-сигнала F и датчик на педали тормоза F47. В пространстве для ног на педали тормоза;
  31. Датчик положения педали сцепления G476 . Установлен только на автомобилях с механической КП.
  32. Датчик положения педали акселератора G79 и датчик положения педали акселератора 2 G185;
  33. Датчик 3 температуры ОГ G495 Лямбда-зонды и датчики температуры ОГ — детали и узлы;
  34. Датчик 1 температуры ОГ G235. Лямбда-зонды и датчики температуры ОГ — детали и узлы;
  35. Датчик 4 температуры ОГ G648 . Лямбда-зонды и датчики температуры ОГ — детали и узлы;
  36. Сажевый фильтр установлен под днищем кузова автомобиляобщий узел с предварительно соединенным основным катализаторомпосле замены необходимо провести корректировку.
  • Выбрать соответствующий автомобиль в ведомом поиске неисправностей;
  • Нажать кнопку „Переход“;
  • Нажать клавишу „Выбор функции/узла“;
  • Выбрать „Привод“;
  • „01 — Системы с фунцией самодиагностики“;
  • „01 — Электроника двигателя J623“;
  • Выбрать „01 — Функции электроники двигателя“;
  • „01 — Адаптация параметров сажевого фильтра“.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий