Датчик избыточного давления и разряжения

ГК «Теплоприбор» – разработка, производство и комплексная поставка контрольно-измерительных приборов и автоматики — КИПиА.

Группа компаний (ГК) «Теплоприбор» (Теплоприборы, Промприбор, Теплоконтроль и др.) — это приборы и автоматика для измерения, контроля и регулирования параметров технологических процессов (расходометрия, теплоконтроль, теплоучёт, контроль давления, уровня, свойств и концентрации и пр.).

География ГК «Теплоприбор»: Москва, Рязань, Челябинск, Казань, Екатеринбург, Санкт-Петербург, Новосибирск, Нижний Новгород, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Белгород, Волгоград, Краснодар, Саратов, Тюмень, Томск, Омск, Иркутск, Улан-Удэ, Саранск, Чебоксары, Ярославль и другие города РФ, также мы работаем с Белоруссией, Украиной и Казахстаном.

Рекомендации как правильно выбрать, заказать и купить контрольно-измерительные приборы и автоматику (КИПиА), дополнительное/вспомогательное оборудование и защитно-монтажную арматуру, а также другую полезную и интересную информацию см. наши официальные сайты.

Работа и вакансии: в Московский офис (СЗАО, ст. метро Планерная, р-н Куркино (рядом МКАД и г. Химки) требуется менеджер по сбыту КИПиА, ЗП достойная, возможна удаленная работа оклад + %. teplokip@yandex.ru

Новые публикации: Статья «Датчики давления. Сравнительный обзор видов, характеристик и цен.»

Применение и подбор датчиков избыточного давления

Выбор датчиков избыточного давления это технически сложная задача, которая зависит от вида давления, характеристик измеряемой среды, внешних условий, метрологических параметров датчика, типа подключения датчика и его дополнительных возможностей по индикации, разнообразия аналоговых выходных сигналов, поддержки общепринятых цифровых промышленных протоколов, и т.д. Прежде чем датчик избыточного давления купить для стандартного применения, выбрать его будет целесообразнее из самых применяемых моделей:

  • промышленный датчик избыточного давления DMP331 для общего использования
  • модели датчиков DMP 333, DMK 331 для измерения среднего и высокого давления
  • датчик DMP 331P для пищевой промышленности с разными типами подключения
  • точный датчик DPS 200 для особо низкого давления газов
  • датчики-индикаторы, датчики-сигнализаторы и датчики-реле
  • специализированные датчики (высокоточные, гидравлика, фреон, вязкие или агрессивные среды)

Дополнительные функции сильно влияют на стоимость устройства и цена на датчики избыточного давления может меняться в разы. Чтобы купить нужный датчик по оптимальной цене, обратитесь к нашим специалистам.

Источник

Принцип работы датчиков давления

Единицы измерения давления

  • Паскаль1 Па = 1 Н/м 2
  • Бар1 бар = 10 5 Па
  • Физическая Атмосфера – атмосферное давление на уровне моря 1 атм = 101325 Па = 1,01325 бар = 10,33 м вод. ст.
  • Метр водяного столба — гидростатическое давление столба воды высотой в 1 метр 1 м вод. ст. = 9806,65 Па = 9,80665×10 -2 бар = 0,096784 атм (напор в водопроводе удобно измерять в метрах водяного столба).

Классификация датчиков по типу измеряемого давления

  • Датчики абсолютного давления(Absolute Pressure Sensor) Эти датчики измеряют давление относительно абсолютного вакуума. Применение: пищевые и химические производства.
  • Датчики избыточного (относительного) давления, манометры(Gauge Pressure Sensor) Эти датчики измеряют давление относительно атмосферного давления в этом месте. Барометры измеряют атмосферное давление. Применение: водоснабжение и водоотведение.
  • Датчики дифференциального (перепада) давления(Differential Pressure Sensor) Эти датчики измеряют перепад (разность) давления в двух точках. Применение: контроль загрязнения фильтров, измерение расхода и уровня жидкости (гидростатический метод).
  • Вакуумные датчики, датчики разряжения(Vacuum Pressure Sensor) Измеряют давление, которое ниже атмосферного (вакуум).

Классификация датчиков давления по принципу действия

  • Пьезорезистивные (Piezoresistive Strain Gage) Используется эффект изменения электрического сопротивления полупроводников под действием механической нагрузки.
  • Пьезоэлектрические (Piezoelectric) Используется пьезоэлектрический эффект – способность некоторых кристаллов (кварца) и керамики генерировать электрическое поле или разность потенциалов пропорционально силе давления (сжатия).
  • Тензометрические (Strain Gauge) Используется тензоэффект – изменение электрического сопротивления тензорезисторов при их деформации под воздействием нагрузки.
  • Емкостные (Capacitive) Используется эффект зависимости ёмкости конденсатора от расстояния между обкладками.
  • Резонансные (Resonant) Используется эффект зависимости частоты собственных колебаний (кварцевого резонатора) от давления.
  • Индуктивные (Electromagnetic) Принцип действия основан на регистрации токов Фуко, возникающих в металлическом экране, расположенном между двумя катушками, одна из которых связана с измерительной мембраной — при её приближении или удалении от экрана изменяется индуктивность системы.
  • Ионизационные (Ionization) Используется эффект зависимости плотности потока ионов от разряжения в катодно-анодной лампе.

Разделители давления

Разделители давления служат для разнесения в пространстве преобразователя и среды измерения. Измеряемое давление передается с разделительной мембраны на наполнительную жидкость и дальше по капиллярной трубке или напрямую в измерительную камеру преобразователя.

  • При использовании в пищевой и фармацевтической промышленности быстросъёмные мембранные разделители можно легко промывать
  • Измеряемое вещество может закупорить или разъесть импульсные трубки
  • Нестандартный температурный диапазон.

Параметры окружающей среды

При подборе преобразователей давления следует учитывать следующие параметры окружающей среды:

  • Температура окружающей среды;
  • Влажность окружающей среды;
  • Наличие агрессивных сред;

Все параметры окружающей среды должны находиться в допустимых пределах для выбираемого датчика давления.

В случае наличия в окружающей среде агрессивных веществ, многие производители датчиков давления (в том числе KLAY-INSTRUMENTS BV) предлагают специальные исполнения, устойчивые к химическим воздействиям.

При работе в условиях повышенной влажности при частых перепадах температуры датчики давления многих производителей сталкиваются с проблемой коррозии сенсора давления. Основная причина коррозии сенсора датчиков давления — образование
конденсата.

Датчикам избыточного давления, для измерения относительного давления, необходима связь сенсора с атмосферой. У недорогих датчиков сенсор связан с атмосферой за счет не герметичности корпуса (коннектор IP65); влажный воздух, при такой
конструкции, после попадания внутрь датчика конденсируется при понижении температуры, тем самым постепенно вызывая коррозию измерительного элемента.

Для применения в процессах, где обычные датчики давления выходят из строя из-за коррозии сенсора, идеально подходят промышленные датчики давления KLAY-INSTRUMENTS. У преобразователей давления KLAY связь сенсора
с атмосферой осуществляется через специальную «дышащую» мембрану из материала Gore-Tex, которая препятствует проникновению влаги внутрь датчика.

Кроме того, контакты сенсора всех датчиков KLAY по умолчанию залиты специальным синтетическим компаундом для дополнительной защиты датчика от коррозии.

Классификация приборов по принципу действия

От принципа действия или метода, используемого при преобразовании входного сигнала в электрический выходной, датчики измерения классифицируют:

  • Тензометрический метод. Чувствительные детали производят измерение сопротивления при воздействии на тензорезистор, прикреплённый к упругому элементу, который при воздействии давления деформируется.
  • Пьезорезистивный метод. Работает на основе интегральных чувствительных деталей из кремния. Преобразователи из кремния обладают высокой чувствительностью благодаря возможности изменения сопротивления полупроводника. Для измерения характеристик в неагрессивных средах используется Low cost — метод исполнения оборудования, когда чувствительный элемент не оборудован какими-либо степенями защиты. В случае работы в среде где, возможно, оказания на датчик агрессивного вещества, чувствительный элемент оборудуется герметичным корпусом с разделяющей диафрагмой из стали, которая передаёт давление посредством кремниевой жидкости.
  • Ёмкостный метод. Главной частью датчика, работающего по такому методу является ёмкостная ячейка. Её работа заключается в изменении электрической ёмкости между укладкой конденсатора и измерительной мембраны в зависимости. Главным плюсом можно отметить защиту от деформации, при отсутствии давления мембрана восстанавливает свою форму, при этом калибровка такого датчика не требуется. А также высокая стабильность характеристик обусловлена малым влиянием погрешности температуры за счёт небольшого объёма жидкости, которая заполняет внутренний объем ячейки.
  • Резонансный метод. За основу работы по такому принципу взято изменение частоты резонансы колеблющегося элемента при его деформации. Из недостатков можно выделить большое время отклика, и невозможность работы в агрессивных средах без потери измерительной точности.
  • Индуктивный метод. Основывается на регистрации вихревых оков. Измерительный элемент состоит из двух изолированных катушек металлическим экраном. Преобразователь проводит измерение смещения мембраны при отсутствии фактического контакта между двумя поверхностями. Электрический ток генерируется в катушках таким образом, что заряд и разряд катушки происходит на равных отрезках временного промежутка. При изменении положения мембраны создаётся ток в зафиксированной катушке, после чего следует изменение индуктивности системы. Смещение данных основной катушки даёт возможность о преобразовании данных в стандартный сигнал, который по своим параметрам пропорционален оказанному давлению.
  • Ионизационный метод. Работает по принципу регистрации поток ионизированных частиц, как ламповый диод. Лампа оборудуется двумя электродами, катодом, анодом, и нагревателем в некоторых случаях. Преимуществом является возможность регистрировать данные в средах с низким давлением, в том числе и вакуума, но при атмосферном давлении такое оборудование эксплуатировать нельзя.
  • Пьезоэлектрический метод. Задумка основывается на основе пьезоэлектрического эффекта, в котором пьезоэлемент создаёт электрический сигнал, пропорционально воздействию измеряемой среды на него. Используется для измерения постоянно изменяющихся акустических и импульсных сред. Обладает широким диапазоном динамического и частного измерения данных. Обладает небольшой массой, габаритами и высокой надёжностью при эксплуатации в тяжёлых условиях.

Поверка датчиков давления (Сапфир, Метран)Поверка датчиков давления (Сапфир, Метран)

Ёмкостной датчик давления

Емкостной преобразователь давления. В данном варианте роль подвижной обкладки конденсатора выполняет металлическая диафрагма

Емкостный датчик давления представляет собой конденсатор, составленный из двух пластин, разделенных диэлектриком. Емкостные преобразователи используют метод изменения емкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые емкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью.

Достоинством чувствительного емкостного элемента является простота конструкции, высокая точность и временная стабильность, возможность измерять низкие давления и слабый вакуум.

К недостатку можно отнести нелинейную зависимость емкости от приложенного давления.

Сенсор давления, датчик давления, преобразователь давления – в чем разница?

Очень часто приходится слышать от наших потребителей использование каждого из этих терминов с совершенно разными смысловыми посылами.

Попробуем разобраться и сформулировать определения этих терминов.

Сенсор давления – это чувствительный элемент, который определенным образом реагирует на изменение давления. Т.е. создаваемое давление непосредственно изменяет свойства сенсора ( емкость, сопротивление и пр.) и таким образом, мы получаем информацию об этом давлении.

На рисунке изображена пластина с пьезорезистивными сенсорами давления

Датчик давления – это наиболее часто встречающееся и всеобъемлющее понятие. Многие специалисты к датчикам давления относят и реле давления ( прессостаты), т.е. приборы, задача которых не выдавать значение давление, а срабатывать на Включение/ Выключение контактов при достижении определенных заданных изначально давлений. Иногда можно даже встретить специалистов, которые называют и манометры датчиками давления.

Но какое же все-таки определение датчиков давления является наиболее правильным? С нашей точки зрения датчик давления – это устройство готовое к измерению давления. Т.е. устройство содержащие в своем составе сенсор давления, имеющее корпус с возможностью монтажа в процесс и электрические выводы виде штырьков, проводов или даже специальных электрических коннекторов.

На рисунках изображены:

Cлева – датчик абсолютного давления со специальным фланцем под сварку Справа – датчик дифференциального давления, крепление датчика производится при помощи уплотнительных колец

Преобразователь давления – это устройство для измерения давления, имеющее унифицированный выходной сигнал аналоговый (4 …20mA, 0…10V и др.) или цифровой (RS485 , CAN и др.). Для удобства потребителей преобразователи давления имеют резьбовое или фланцевое присоединение.

Как правильно выбрать преобразователь давления? Читайте нашу статью.

Источник

Виды и работа датчиков избыточного давления

Больше всего распространены пъезоэлектрические, тензометрические и ёмкостные аналоговые или цифровые датчики избыточного давления. Обе группы датчиков интегрируются в общую АСУ ТП. Датчики состоят из полости с чувствительным сенсором и электронного блока с дополнительными устройствами. Давление воздействует на сенсор, который меняет свои токопроводящие характеристики. Электронный блок распознаёт изменение состояния сенсора, формирует выходной электрический сигнал и управляет дополнительными устройствами (отображения, сигнализации, реле). Ряд моделей датчиков способен измерять избыточное давление в агрессивных средах.

Проверка датчика абсолютного давления

Во-первых, убедитесь, что разрежение в коллекторе двигателя на холостом ходу соответствует техническим характеристикам. Вакуум может быть необычно низким из-за подсоса воздуха, задержки зажигания, ограничения выхлопа (засоренный катализатор) или утечки EGR (клапан EGR не закрывается на холостом ходу).

Слабое разрежение на впуске или избыточное противодавление в выхлопной системе могут обмануть датчик MAP, указывая на наличие нагрузки на двигатель. Это может привести к обогащению топливной смеси.

С другой стороны, ограничение на впуске воздуха (например, загрязнённый воздушный фильтр) может привести к превышению нормальных показаний вакуума. Это приведет к тому, что MAP сенсор будет передавать сигнал о низком уровне нагрузки и, возможно, к состоянию обедненной смеси.

Исправный ДАД должен показывать атмосферное давление при повороте ключа зажигания до запуска двигателя. Это значение можно посмотреть с помощью диагностического сканера или адаптера ELM327 с программой Torque и сравнить с фактическим показанием атмосферного давления, чтобы увидеть, совпадают ли они. Текущее атмосферное давление можно посмотреть на сервисе Яндекса.

Проверьте вакуумный шланг датчика на наличие изломов или утечек. Затем используйте ручной вакуумный насос, чтобы проверить сам ДАД на герметичность. Датчик должен держать вакуум. Любая утечка говорит о необходимости замены MAP сенсора.

Неполадка датчика давления, потеря сигнала из-за проблем с проводкой или сигнал датчика, выходящий за пределы нормального напряжения или диапазона частот, обычно устанавливают диагностический код неисправности (DTC) и включают индикатор Check Engine.

Проверка сканером OBD2

На автомобилях после 1996 года могут диагностироваться коды ошибок OBD II с P0105 по P0109. Это будет указывать на неисправность в цепи датчика MAP.

  • P0105 — Неисправность цепи датчика абсолютного давления.
  • P0106 ​​— Сигнал ДАД вне диапазона.
  • P0107 — Низкое давление в коллекторе.
  • P0108 — Высокое давление в коллекторе.
  • P0109 — Прерывистый сигнал цепи датчика абсолютного давления.

Выходное напряжение MAP датчика можно считывать в реальном времени и сравнивать со спецификациями. По сути, вы должны увидеть быстрое и резкое изменение сигнала датчика давления, когда дроссель на холостом ходу открывается и закрывается. Отсутствие изменений будет указывать на неисправность датчика или проводки.

Если показания датчика низкие или отсутствуют совсем, нужно проверить опорное напряжение, приходящее на датчик. Оно должно быть очень близко к 5 вольтам. Также проверьте заземление. Если опорное напряжение низкое — проверьте жгут проводов и разъём, возможен плохой контакт, повреждение или коррозия.

Диагностические сканеры также отображают «рассчитанное значение нагрузки», которое можно использовать для определения, работает ли датчик MAP или нет.

Значение нагрузки рассчитывается с использованием входных данных от ДАД, датчика положения дроссельной заслонки (ДПДЗ / TPS), ДМРВ и частоты вращения двигателя. Значение должно быть низким на холостом ходу и высоким — когда двигатель находится под нагрузкой. Отсутствие изменения значения или превышение нормальных показаний на холостом ходу может указывать на проблему с датчиком абсолютного давления, ДПДЗ или ДМРВ.

Проверка мультиметром

Датчик давления также может быть испытан на стенде путем подачи вакуума с помощью ручного вакуумного насоса. Выходной сигнал должен падать, начиная с 5 вольт опорного напряжения. Вместо насоса можно использовать пустой медицинский шприц через шланг.

Таблица для проверки датчика давления аналогового типа:

Приложенный вакуум, мБар Напряжение, вольт Показания ДАД, Бар
4.3 – 4.9 1.0 ± 0.1
200 3.2 0.8
400 3.2 0.6
500 1.2 – 2.0 0.5
600 1.0 0.4

Таблица показаний ДАД атмосферного двигателя:

Состояние Напряжение, вольт Показания ДАД, Бар Вакуум, Бар
Полностью открытый дроссель 4.35 1.0 ± 0.1
Зажигание включено 4.35 1.0 ± 0.1
Холостой ход 1.5 0.28 – 0.55 0.72 – 0.45
Двигатель остановлен 1.0 0.20 – 0.25 0.80 – 0.75

Таблица показаний ДАД турбированного двигателя:

Состояние Напряжение, вольт Показания ДАД, Бар Вакуум, Бар
Полностью открытый дроссель 2.2 1.0 ± 0.1
Зажигание включено 2.2 1.0 ± 0.1
Холостой ход 0.2 – 0.6 0.28 – 0.55 0.72 – 0.45

Выходное напряжение аналогового датчика MAP может быть измерено непосредственно с помощью мультиметра или осциллографа. Частотный сигнал цифрового ДАД также может быть считан с помощью цифрового мультиметра, если он имеет функцию измерения частоты, или осциллографа. Измерительные провода приборов должны быть подключены к сигнальному выводу и заземлению.

Источник

Датчик давления, разрежения и температуры газа: основные неисправности, ремонт своими руками

В газовом оборудовании 4-го поколения используются электронные датчики, которые взаимодействуют с электронным блоком и позволяют корректировать работу ГБО. Сегодня я расскажу о датчике давления разрежения и температуры газа. Тем, кто подумал, что это три разных датчика, объясняю — это один датчик, который выполняет сразу три функции.

Чаще всего этот датчик называют просто датчиком давления газа, поскольку в большинстве случаев он необходим именно для контроля давления. Однако внутри корпуса одного датчика находится три контроллера (давления, разрежения и температуры), которые следят сразу за тремя параметрами.

Различия по использованию

По характеру измеряемого параметра различают следующие разновидности датчиков:

  • абсолютного давления;
  • избыточного давления;
  • дифференциальные.

Измерение давления чаще всего требуется для задания общих режимов работы оборудования: включения или выключения подающих насосов, системы подогрева и множества других управляемых автоматикой процессов. Простые по конструкции устройства прошлых лет измеряли перепад показателя по отношению к атмосферному, что не всегда удовлетворяло требованиям точности. Это связано с тем, что величина, с которой атмосфера давит на поверхность, может ощутимо меняться (в истории зафиксированы измерения от 641 до 816 мм ртутного столба).

Датчик абсолютного давления

Чтобы избежать ошибок из-за влияния погоды, более современные приборы способны отсекать влияние атмосферы. Они регистрируют измеряемую величину по отношению к глубокому вакууму. Такой сенсор называют абсолютным. Полученные от него показания чаще всего применяют для последующей цифровой обработки, чтобы расчетным путем привести характеристику давления к стандартным условиям. Это необходимо для правильной фиксации расхода тепловой энергии или газа в системах учета.

Датчик избыточного давления

Более простые в устройстве датчики избыточного давления учитывают суммарный показатель абсолютного и атмосферного. Без них не обойтись в коммунальном хозяйстве, в производственных или коммерческих устройствах, регистрирующих расход жидкости или газа. Другая область применения простых и надежных измерителей избыточного давления — устройства аварийной сигнализации о превышении допустимого уровня.

Дифференциальный датчик

Датчик дифференциального типа определяет разницу давлений в двух раздельных полостях. Обычно такие приборы установлены в приборе, который постоянно контролирует расход вещества, протекающего по трубе, без использования вращающихся деталей. Его принцип действия основан на эффекте увеличения давления потока перед сужением диаметра и уменьшения после него. Чем такая разница выше, тем больше и протекающий по трубе поток.

Одна из возможных схем подключения этих устройств приведена на рисунке.

Диапазон измеряемой величины

Поскольку интервал показателя давления весьма широк, то инженерам требуются сенсоры, способные качественно измерять параметры в интересующем диапазоне. Изготовить прибор, одинаково хорошо и с удовлетворительной чувствительностью применимый как в глубоком вакууме, так и на промышленном компрессоре высокого уровня сжатия, на практике невозможно. Поэтому существуют отдельные датчики: вакуумные, низкого и высокого давления. В числовом выражении:

  • вакуумные датчики — для измерения низкого (1 мм. рт. ст.) или высокого (105 мм. рт. ст.) вакуума;
  • датчики низкого давления — от атмосферного до величин порядка 10 Па (встречается также другое название: форвакуумные);
  • датчики высокого давления — измеряют параметр выше 1 атм., также делятся на диапазоны по возрастанию компрессии.

Датчики низкого давления широко применяют в научном и лабораторном оборудовании, в медицине, в промышленности, производящей электронные компоненты и сверхчистые вещества.

По типу контролируемой среды

Потребность узнать степень сжатия или разрежения рабочей среды может возникнуть для самых разных веществ или агрегатных состояний. Чтобы обеспечить долгий срок службы и достаточную точность показаний, регистрирующие приборы также делают с учетом условий, в которых им предстоит работать.

Обычно это:

  • датчики давления воздуха — замеряют показатель сжатия газообразной среды в широком интервале величин;
  • топливные — устанавливают в системе питания двигателей, например, в топливной рампе инжекторного мотора с целью оптимизировать состав и количество горючей смеси в цилиндрах;
  • водяные — для трубопроводов и магистралей в коммунальном хозяйстве, для установки на насосной станции;
  • для агрессивных сред — в защищенном исполнении используют в химическом производстве, при перекачке нефти и газа.

Конструкция и принцип действия датчика

Учитывая разнообразие исполнения газовых котлов, следует отметить, что датчики контроля тяги встречаются также разной конструкции. Если рассматривать их конструкцию исключительно обобщённо, речь пойдёт о достаточно простом механизме приборов.

Основой практически любого сенсора контроля тяги газового котла выступает биметаллический элемент, меняющий форму при изменениях температурного фона. Фактически это простая биметаллическая пластина, которая изгибается при нагреве или охлаждении.

Изменением формы пластины управляется контактная группа, переводящая состояние контактов на «включено» или «выключено». Коммутационный сигнал контактной группы передаётся на контроллер газового котла или на более простой механизм управления подачей газа.

Тип датчика, контролирующего тягу в дымовом канале, зависит от используемого котла.

Так, существуют и применяются на практике два типа газовых котлов:

  1. Конструкции, оснащённые простым дымоходом (с естественной тягой).
  2. Конструкции, оснащённые дымоходом с турбиной (с принудительной тягой).

Эти конструкции отличаются одна от другой и датчики тяги, используемые для них, также разнятся.

Устройства для котлов с естественной тягой

В котлах с естественной тягой применяется так называемый колпак дымовых газов, в тело которого встраивается простой миниатюрный термостат, как показано на картинке ниже.

Термостат простой конструкции в миниатюрном исполнении обычно наделяется соответствующей температурной меткой непосредственно на корпусе (на металлической обечайке). Эта метка (например, 75º) указывает температурную границу срабатывания контактной группы сенсора.

Термостатический прибор подобного исполнения устанавливается, как правило, в составе конструкций навесных газовых котлов, где используется колпак дымовых газов, встроенный в линию дымохода

Действует такое устройство просто. Если дымовые газы, проходящие через колпак с установленным датчиком, нагреют прибор выше установленного температурного параметра (что говорит о нарушении нормы режима тяги), контакты разомкнут цепь.

Соответственно, по причине разомкнутой цепи выключится из работы (заблокируется) система подачи газа на котёл. Повторно оборудование запустится только после остывания сенсора и восстановления разомкнутого контакта.

Конструкции датчиков турбинных котлов

Котлы, оснащённые дымоходом с турбиной, имеют несколько иной датчик определения тяги газового котла с принципом работы, отличающимся функционально. Прежде всего, отличие заключается в том, что сенсор фактически управляет вентилятором турбины котла. Иными словами, осуществляется контроль оптимальной тяги дымовых газов вентилятором.

Именно поэтому устройство датчиков тяги турбинных газовых котлов выполнено не под контроль температуры, а под контроль объёма проходящих угарных газов.

Такие датчики работают по факту наличия оптимального разрежения внутри камеры сгорания, имеют контактную группу из трёх элементов:

  • контакт COM;
  • нормально открытый (NO);
  • нормально закрытый (NC).

Конструктивно приборы выполняются разными по форме, но их принцип действия остаётся неизменным. По факту образования рабочих условий внутри камеры газового котла (оптимальное разрежение) подводимым давлением воздуха замыкается контактная группа, отправляя сигнал на подачу газа.

Несколько другой тип сенсорных элементов, предназначенных контролировать тягу в котле – конструкции, принцип действия которых основан на разнице давлений исходящего потока

Какие виды существуют?

Список основных видов манометров для воды:

  1. Самые распространенные – общетехнические пружинные манометры для воды, с диапазоном измерения от 0 до 10 или от 0 до 6 атмосфер. Диаметр корпуса может быть от 40 до 160 мм, чаще всего – 100.
  2. Котловые – с диаметром корпуса 250 мм. Они нужны, чтобы на расстоянии снимать показания прибора.
  3. Виброустойчивые манометры – заполнены внутри вязкой жидкостью, в частности раствором глицерина или силиконовым маслом. Измеряют давление в условиях сильных вибраций. Применяются на насосных станциях, автомобилях, компрессорах, поездах.
  4. Коррозионностойкие манометры – для работы с химически агрессивными средами.
  5. Высокоточные нужны для поверки и опрессовки.
  6. Цифровые электронные – механическая сила преобразуется в электрический сигнал. Показания снимают с табло, можно программировать, некоторые приборы можно подключать к компьютеру.
  7. Электроконтактные (сигнализирующие) – приборы, в которых устанавливается верхний и нижний пределы давления. В случае их преодоления электронный прибор срабатывает и передает сигнал на управляющее устройство.
  8. Термоманометры – это приборы, измеряющие давление и температуру в системе отопления или водоснабжения. На лицевой стороне две шкалы, по которым снимают показания.

Требуемая точность измерений

При расчете погрешности измерений датчиков давления, необходимо учитывать, что помимо основной погрешности существует дополнительная погрешность.

Основная погрешность – значение погрешности датчика давления относительно диапазона измерений, заявленная заводом изготовителем для нормальных условий эксплуатации. Как правило, под нормальными условиями
эксплуатации понимают следующие условия:

  • Температура окружающей и рабочей среды – 20 °C;
  • Давление рабочей среды – в пределах диапазона измерений датчика;
  • Нормальное атмосферное давление;
  • Отстуствие турбулентности потока или других явлений, в месте установки датчика, способных повлиять на показания.

Дополнительная погрешность — значение погрешности, вызванное отклонением условий эксплуатации от нормальных, ввиду особенностей данного конкретного применения. Одной из основных составляющих дополнительной погрешности
является температурная погрешность, которая указывается в технической документации к датчикам давления и может быть рассчитана для конкретного значения температуры рабочей среды.

Также дополнительную погрешность может вызывать турбулентность потока измеряемой среды, изменение плотности среды при гидростатическом измерении уровня, динамические нагрузки на оборудование во время перемещения в пространстве (судна,
транспорт и т. д.) и другие возможные факторы.

При расчете погрешности измерительной системы в целом нужно также учитывать класс точности измерительного прибора — индикатора.

Дано:

  • Датчик давления KLAY-Instruments8000-SAN-F-M(25) установлен на трубопроводе с продуктом;
  • Максимальное давление продукта – 4 бар, таким образом датчик настроен на диапазон 0…4 бар;
  • Максимальная температура продукта – 60 °C;
  • Турбулентность потока и другие факторы на точность не влияют.

Решение:

  • По паспортным данным, находим, что основная погрешность датчика 8000-SAN-F-(M25) составляет 0,2 %
  • Температурная погрешность по паспорту равна 0,015 %/°C, таким образом температурная ошибка при 60 °C равна 0,015 %/°C х (60 °C – 20 °C) = 0,6 %
  • 0,2% + 0,6% + 0,25% = 1,05% – полная относительная погрешность;
  • 1,05% х 4 бар = 0,042 бар – абсолютная погрешность измерений данной системы.

Датчик перепада давления (реле перепада)

Реле перепада давления предназначено для определения разности давления между двумя точками в жидких и газообразных средах.

Принцип действия реле достаточно прост: внутри расположена мембрана (или похожее устройство), на каждую из сторон которой действует давление двух различных точек среды. При достижении давлением заданного уровня мембрана изгибается и механически замыкает выходные контакты реле перепада.

Выход реле перепада давления, как и обычного электомагнитного реле , представляет собой группу контактов: нормально-открытый (НО) и нормально-закрытый (НЗ). В исходном состоянии НЗ контакт замкнут, а НО — разомкнут. При достижении разности давления заданного уровня происходит сработка реле и выходные контакты меняют свои состояния на противоположные.

Разность давлений, при которой происходит сработка реле задаётся с помощью ползунка или «крутилки» на корпусе реле. Диапазон, в котором происходит настройка является одним из главных параметров при выборе реле перепада.

Другим важным параметром является тип сред, в которых может работать реле. Некоторые из таких устройств предназначены только для воздушной среды, а другие подходят сразу для газов и жидкостей. Так же нужно учитывать агрессивность среды.

Неисправность датчика давления газа

Выход из строя, как правило, сопровождается произвольным переключением с газа на бензин, а также миганием индикаторов и звуковым сигналом.

Что при этом происходит? Мембрана датчика давления (маркировка: MPXHZ6400A) выходит из строя, после чего датчик не реагирует на изменения давления газа.

Второй датчик — датчик разрежения (маркировка: MPXHZ6250A) измеряет давления воздуха, поэтому его мембрана стойка к газовому топливу, однако случается, что неисправен именно датчик разряжения. Например, если во время установки перепутать шланги (разрежения и давления), можно получить неисправный датчик разрежения. Хотя у некоторых производителей два эти датчика представлены одним и тем же контроллером MPXHZ6400A, поэтому многие считают, что принципиальной разницы в подключении шлангов нет.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий