Виды и устройство датчиков положения, где можно применить в домашних условиях

Виды датчиков

Любой сенсор движения функционирует за счет анализа поступивших на него извне определенных волн (радио, звуковых, тепловых и прочих). По принципам действия устройства делятся на:

  • ультразвуковые;
  • инфракрасные датчики;
  • световые (фотоэлектрические);
  • томографические (на радиоволнах);
  • микроволновые, использующие излучение СВЧ.

Гаджеты могут либо просто воспринимать поступающие волны, либо генерировать их сами и анализировать отраженные. По этому принципу они делятся на активные устройства, пассивные и комбинированные. Комбинированный датчик движения обычно имеет совмещенную конструкцию с вынесенными отдельно излучающими и принимающими модулями.

Самые распространенные разновидности:

  • PIR-датчики (пассивные инфракрасные). Это самый простой и недорогой вариант из присутствующих сегодня на рынке. Они составляют около половины общей массы сенсоров перемещения;
  • активные — томографический тип, микроволновый сенсор движения или ультразвуковой;
  • комбинации ИК- и фотоэлектрических.

Производители предпочитают комбинировать в одной модели разные типы сенсоров. Это связано с неизбежными для такого класса приборов погрешностями и ложными срабатываниями. Для увеличения точности и снижения шансов на «ложную тревогу» разработчики объединяют в едином корпусе несколько технологий (например, ИК и ультразвуковую). Это уменьшает процент фейковых реакций, но взамен иногда снижает характеристики чувствительности. Такое загрубление способно приводить к несрабатыванию на реальное движение, которое следовало бы зарегистрировать.

По месту крепления датчики бывают:

  • потолочные;
  • настенные.

Уровни защиты

По месту установки приборы делятся на внешние, с наружным монтажом, и внутренние — для работы в помещениях.

Значения данной характеристики кодируются двумя цифрами: первая указывает на степень защищенности от пыли и попадания прочих твердых предметов, вторая — на защиту от влаги. Например, маркировка IP20 говорит о пригодности для монтажа в жилых помещениях и офисах. Защита от влаги отсутствует, а корпус предохраняет компоненты от предметов размером выше 12.5 мм. В ванной комнате такой прибор ставить нельзя.

IP44 — защита более серьезная:

  • корпус предохраняет от частиц более 1 мм;
  • обеспечена защищенность от водяных брызг.

Такой вариант лучше подойдет для ванных комнат, кухонь, гаражей и прочих влажных и загрязненных мест. Максимальная степень IP в этом классе оборудования — 65. Это уличный вариант, такие приборы способны работать вне помещений в любое время года, не боятся кратковременных воздействий прямых струй воды, защищены от пыли и температурных перепадов. Они часто используются как уличные датчики движения для освещения.

Индуктивные датчики углового положения

Индуктивные датчики углового положения в при ближайшем рассмотрении чаще всего оказываются не совсем угловыми. В таких датчиках вращение сначала преобразовывается в линейное перемещение металлического либо ферритового сердечника внутри специально сконструированной катушки индуктивности. Выходной сигнал, снимаемый с выходов катушки, изменяется в зависимости от положения сердечника.

БСПТ-10М

Этот датчик выдает нормализованный токовый сигнал 4..20 мА, а также имеет 4 настраиваемых концевых выключателей. Основным недостатком этого датчика является большое время отклика, в связи с чем его нельзя использовать для измерения в случае быстро изменяющейся скорости и направления вращения, так как сигнал будет выдаваться с задержкой.

Сроки пыления растений в Украине и структура поллинозов

Индуктивный датчик: принцип действия и устройство

Индуктивный датчик является очень распространенным устройством, входящим в состав низового оборудования в автоматизированных системах управления производством. Устройства широко применяются в машиностроении, текстильной, пищевой и других отраслях промышленности.

Наиболее эффективно приборы используются в станках в качестве конечных выключателей, а также в автоматических линиях.

При этом индуктивные датчики реагируют только на металлы, оставаясь нечувствительными к другим материалам. Данное свойство позволяет увеличить защищенность устройств от помех, вводя в их зону чувствительности различные смазки, эмульсии и другие вещества, что не вызовет ложного срабатывания.

Объектами, на которые воздействует индуктивный датчик положения, являются различные металлические детали: кулачки, ползуны, зубья шестеренок. Во многих случаях может применяться прикрепленная к деталям оборудования пластина.

По статистике, из всех используемых датчиков положения более 90 процентов приходится на индуктивные устройства.

Это можно объяснить их отличными эксплуатационными характеристиками, низкой стоимостью и одновременно высокой надежностью, чего нельзя сказать о других приборах.

Бесконтактный выключатель (индуктивный датчик) работает по следующим принципам. Входящий в состав устройства генератор производит электромагнитное поле, которое взаимодействует с объектом. Необходимую длительность сигнала управления и гистерезис при переключении обеспечивает триггер. Усилитель позволяет увеличить до необходимого значения амплитуду сигнала.

Расположенный в датчике световой индикатор обеспечивает оперативность настройки, контроль работоспособности и показывает состояние выключателя. Для защиты от проникновения в устройство воды и твердых частиц используется компаунд. Корпус изделия позволяет монтировать индуктивный датчик приближения и защищает приспособление от механических воздействий. Его изготавливают из полиамида или латуни, комплектуя метизными компонентами.

В процессе работы устройства при подаче напряжения катушкой индуктивности генератора создается переменное магнитное поле, которое располагается перед активной поверхностью выключателя. При попадании в зону чувствительности объекта воздействия происходит снижение качества контура и амплитуды колебаний. В результате происходит срабатывание триггера и изменяется состояние выхода выключателя.

Индуктивный датчик имеет некоторые особенности применения. Он может распознавать различные группы металлов, благодаря отсутствию износа и механического воздействия является долговечным приспособлением. Устройства комплектуют с помощью механизмов защиты от короткого замыкания и перегрузок.

Они имеют стойкость к высокому давлению, впускаются в различных вариантах для применения при высоких (до 150 Сo) и низких (от – 60 Со) температурах. Индуктивный датчик обладает устойчивостью к активным химическим средам, может иметь аналоговый или дискретный выход для определения положения относительно устройства объекта воздействия.

Датчики с цифровым выходом SPI.

Стандарт SPI (serial peripherals interface) был разработан компанией Motorola для аналогичных задач, что и стандарт I2C. Тем не менее протокол SPI немного сложнее, обеспечивает дуплексный способ связи и более высокую скорость передачи данных. Однако для реализации SPI необходимо уже минимум три провода для подключения всех устройств на шине, а также дополнительную линию выбора для каждого ведомого устройства. Преимущество дополнительной линии заключается в более простом выборе устройства, чем адресация по шине I2C и соответственно меньше программных операторов для установления обмена. Также, как и в случае I2C, для протокола SPI существуют библиотеки для большинства микроконтроллеров.

Общие сведения

Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.

Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. В качестве отдельной категории использования датчиков в автоматических системах регистрации параметров можно выделить их применение в системах научных исследований и экспериментов.

3.6. Емкостные датчики

Принцип
действия емкостных измерительных
преобразователей основан на изменении
емкости конденсатора под воздействием
входной преобразуемой величины. Емкость
конденсатора:

где ε — относительная
диэлектрическая проницаемость
диэлектрика;

ε
— диэлектрическая проницаемость
вакуума;

S
— площадь
пластины;

δ — толщина
диэлектрика или расстояние между
пластинами.

Емкостные
преобразователи используют для измерения
угловых и линейных перемещений, линейных
размеров, уровня, усилий, влажности,
концентрации и др. Конструктивно они
могут быть выполнены с плоскопараллельными,
цилиндрическими, штыревыми электродами,
с диэлектриком между пластинами и без
него.

Емкостный
плоскопараллельный измерительный
преобразователь с изменяемой площадью
перекрытияS
(cм.
рис. 3.8, а)
описывается
уравнением преобразования:

где а
— ширина
пластин конденсатора;

X
— длина
перекрытия электродов.

а) б) в)

Рисунок 3.8 Схемы
емкостных датчиков с различными
измеряемыми параметрами.

Рисунок 3.9 Емкостной
датчик для измерения угловых велечин

Емкостные
преобразователи перемещения с переменной
площадью перекрытия (рис. 3.9) используют
и для измерения угловых величин. В этом
случае емкость измерительного
преобразователя:

(3.2)

а чувствительность:

(3.3)

где r2,
r1
— соответственно
наружный и внутренний радиусы пластин;

φ, φ
— соответственно текущий (измеряемый)
и начальный углы перекрытия пластин.

Емкостный
плоскопараллельный преобразователь
перемещения с изменяющимся воздушным
зазором(см.
рис. 3.8, б) имеет
нелинейную характеристику. Изменение
его емкости описывается уравнением:

где δ
— начальный зазор;

X
— перемещение
пластины.

В связи с нелинейностью
статической характеристики такие
датчики применяют для измерения
относительно малых перемещений, обычно
не более 0,1δ.

Преобразователи
с изменяемой диэлектрической проницаемостью
среды ε
между электродами (см. рис. 3.8, в)
широко используют
для измерения уровня жидких и сыпучих
веществ, анализа состава и концентрации
веществ в химической, нефтеперерабатывающей
и других областях промышленности, для
счета изделий, охранной сигнализации
и т.п. Они имеют линейную статическую
характеристику.

Емкость измерительных
преобразователей в зависимости от
конструктивных особенностей колеблется
от десятых долей до нескольких тысяч
пикофарад, что приводит к необходимости
использовать для питания датчиков
напряжение повышенной частоты — от
1•103
до 108
Гц. Это один из существенных недостатков
подобных преобразователей.

К достоинствам
емкостных измерительных преобразователей
можно отнести простоту конструкции,
малые размеры и массу, высокую
чувствительность, большую разрешающую
способность при малом уровне входного
сигнала, отсутствие подвижных токосъемных
контактов, высокое быстродействие,
возможность получения необходимого
закона преобразования за счет выбора
соответствующих конструктивных
параметров, отсутствие влияния выходной
цепи на измерительную.

Недостатки емкостных
измерительных преобразователей состоят
в относительно низком уровне выходной
мощности сигналов, нестабильности
характеристик при изменении параметров
окружающей среды, влиянии паразитных
емкостей.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

(adsbygoogle = window.adsbygoogle || []).push({});

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации — механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы — изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN замена. Слева — исходная схема, справа — переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле (примеры — ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика — НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к какому-либо входу. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор «висит в воздухе», то это называют «схема с открытым коллектором». Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать «прям щас».

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 — 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен — на входе контроллера дискретный «0″, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Да, не совсем то, что мы хотели. В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов — тахометр, или количество заготовок.

Как добиться полного функционала? Способ 1 — механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 — перепрограммировать вход контроллера чтобы дискретный «0″ был активным состоянием контроллера, а «1″ — пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Пример изготовления датчика

Световой датчик состоит из источника света и приемника светового излучения. В домашних условиях в качестве источника можно применить лазерную указку. Выбор может упасть также на светодиоды, что уменьшит расстояния между источником и приемником света. В охранной сигнализации источником может быть инфракрасный диод, что сделает устройство менее заметным.

Принципиальная схема приемника светового прибора представлена на изображении:

Что надо иметь для самостоятельного изготовления

Для практической реализации представленной схемы понадобятся следующие основные инструменты и комплектующие.

  • Паяльник. Мастер должен уметь работать с этим инструментом.
  • Мультиметр — для измерения электрических параметров собираемой схемы.
  • Бокорезы, пинцет. Эти инструменты необходимы для выполнения проводки и работы с мелкими электронными комплектующими.
  • Транзистор с фотоэлементом. Из него следует изготовить фотоэлемент — собственно основной чувствительный элемент датчика. Для этого подойдет фототранзистор с корпусом как показано на изображении:С помощью бокорезов освободить транзистор от крышки. Получится открытая поверхность кристалла фотоэлемента (смотреть изображение), которая будет реагировать на попадание света.
  • Операционный усилитель для увеличения параметров сигнала при использовании внешних приемников для подачи сигнала (радиоприемник или другой вид информирования о случившемся событии). Выглядит операционный усилитель как показано на изображении:
  • Конденсатор, резисторы, реле. В качестве реле подойдет РЭС55, смотреть изображение:
  • Драйвер или блок питания для подачи напряжения (можно бывший в употреблении, но рабочий от 4.5 В до 12 В)

Основные рекомендации и порядок сборки

  • Из подготовленных деталей выполняется несложная схема, приведенная выше.
  • Производится подключение с помощью паяльника к блоку питания. Собранная плата выглядит, как показано на изображении:
  • Собранную схему лучше разместить в каком-нибудь корпусе, подходящем по размеру.

Как работает самодельный датчик света

Источник света направляет излучение на кристалл фотоэлемента транзистора VT1 (смотреть схему), создавая условия аналогичные подаче напряжения на его базу. В таком случае полупроводник откроется, а конденсатор С1 зарядится. Резистор R1 регулирует величину точки срабатывания транзистора и подбирается опытным путем (за базу взято значение 10 кОм). Конденсатор подбирается емкостью 10 мкф.

В тот момент, когда свет перестает падать на фотоэлемент, а это происходит при возникновении преграды в виде человека, конденсатор начнет разряжаться. При этом напряжение в точке А будет постепенно снижаться. Операционный усилитель многократно усиливает сигнал и на выходе можно будет подключить извещатели различного типа.

Анализировать информацию с датчика поможет установка в схему реле. Его подключаем следующим образом: один контакт соединяем с цепью питания, другой заземляем, а третий подключаем к извещателю, например, радиоприемнику, как показано на изображении:

Пока свет попадает на фотоэлемент, питающая цепь реле соединена с корпусом и радио не работает. В отсутствии сигнала от фотоэлемента контакт реле переключается на цепь питания (на изображении 12 В) и радио подает звуковой сигнал.

Назначение

Необходимость в использовании датчиков, контролирующих температурные параметры, может возникнуть в различных ситуациях. Это универсальные приборы используются повсеместно на предприятиях, где стабильность температурных параметров способно нанести вред качеству выпускаемой продукции либо повлиять на технические характеристики эксплуатируемого оборудования.

Их активно подключают на предприятиях нефтегазового и энергетического комплекса, обеспечивается реализация технологических процессов на литейном, машиностроительном, прокатном производстве, при изготовлении металлоконструкций и выполнении механической обработки. Они незаменимы в транспортной индустрии, на предприятиях пищевой промышленности, в фармацевтики, сельском хозяйстве.

И их помощью:

  • контролирует протекание химических реакций;
  • проводятся научные исследования;
  • обеспечивается поддержание степени нагрева обрабатываемого изделия в заданном диапазоне;
  • поддерживаются оптимальные температурные параметры в различных узлах автомобильного и железнодорожного транспорта;
  • создаются нужные условия для обработки зерна и при производстве комбикорма;
  • измеряется температура конкретного объекта с заданной точностью;
  • реализуется обратная связь, благодаря которой удается избежать преждевременного выхода оборудования из строя.

Параметры светового потока

Прежде чем двинутся дальше нужно понять, что представляет собой световой поток и какие его характеристики доступны к изменению для последующей фиксации оборудованием.

В сущности, обсуждаемое излучение представляет собой электромагнитные волны, видимые человеческим глазом. Зачастую понятие оптической длины расширяют, относя к нему инфракрасные и ультрафиолетовые спектральные уровни.

В качестве потока света принимается любое излучение с длиной волны в пределах 380–740 нм или колебаниями в ~480–790 ТГц. Нервные окончания в совокупности с мозгом производят градацию частот поступающих сигналов, воспринимая их как цвет потока, что хорошо демонстрирует таблица:

В неживой природе доступно разделение сложного излучения на частотные составляющие при переходе его из одной среды в другую, что хорошо демонстрируется обычной призмой. В сущности, частота потока и есть один из тех факторов, который улавливается измеряющим оборудованием, а изменение его от номинала служит информационной составляющей.

Следующей характеристикой потока излучения можно назвать его поляризацию. Колебания волны света проходят своеобразную плоскость. Именно точка соприкосновения «низа» и «верха» излучения в пределах колебаний к этой, своеобразной оси, служат обоснованием поляризации текущего потока. Кроме того, для эллиптического света есть такое понятие, как вращающийся вектор плоскости перехода. Причем двигаться он может, как по часовой стрелке, так и против нее. Технически, из любого оптического потока можно выделить поляризованный свет, или даже превратить его в циркулярный, повернув плоскость на необходимый угол. Именно определение названных характеристик приборами и служит одним из методов получения информации от датчиков.

И последней важной составляющей параметров света служит его интенсивность или мощность. Разделяют силу самого излучения и светового потока

Это разные величины, которые отличаются по фотометрическим характеристикам. К примеру, даже при энергетической мощности зеленого спектра ниже чем фиолетового, он все равно зрительно воспринимается, как более яркий. Определение получаемой световой или энергетической мощности потока света служит еще одой основой работы волоконно-оптических датчиков.

Ультразвуковые датчики

Ультразвуковой датчик используется для обнаружения присутствия объекта. Это достигается за счет излучения ультразвуковых волн от головки устройства и последующего приема отраженного ультразвукового сигнала от соответствующего объекта. Это помогает в обнаружении положения, присутствия и движения объектов.

Поскольку ультразвуковые датчики полагаются на звук, а не на свет при обнаружении, они широко используются для измерения уровня воды, медицинских процедур сканирования и в автомобильной промышленности. Ультразвуковые волны могут обнаружить невидимые объекты, такие как прозрачные пленки, стеклянные бутылки, пластиковые бутылки и листовое стекло, с помощью своих отражающих датчиков.

Датчик с цифровым выходом I2C.

В цифровой электронике обмен данными между компонентами устройства производится по шине связи. Наибольшее распространение получила шина I2C (inter-integrated curcuit bus) разработанная компанией Philips в 1982 г. Стандарт I2C определяет протокол обмена данными, который ограничен частотой 400 kHz(за некоторыми исключениями) и предназначен для работы в пределах одного устройства, чаще всего на одной печатной плате. Протокол прост в разработке, так как данные передаются последовательно по двум проводам и компоненты могут подключаться параллельно к одной шине. Как правило, на шине есть одно ведущее устройство (master) и некоторое количество ведомых (slave). Ведомые и ведущее устройства могут передавать и принимать данные, но инициатором связи всегда является ведущее. Также ведущее устройство генерирует тактовый сигнал для синхронизации данных. Датчик с таким интерфейсом является ведомым устройством, которое может быть опрошено микроконтроллером. Поскольку к одной шине может быть подключено много устройств, каждому присваивается уникальный адрес для точной идентификации. Часто ведомые устройства позволяют изменять пользователю последние два бита адреса, поэтому можно использовать до четырех идентичных устройств на одной шине. Библиотеки для протокола I2C доступны для большинства микроконтроллеров, поэтому для настройки связи достаточно в программе указать адрес датчика. Однако специальные регистры датчика могут быть сложно устроены, поэтому необходимо изучить Datasheet производителя. Например, различные два байта команды могут использоваться для считывания данных с датчика о температуре, времени, а также GPS координат местоположения.

Немного истории — когда возникли датчики давления шин?

Изначально такие системы ставились на военной технике. Эти системы одновременно позволяли подкачать шины. Давление в шинах контролировал стрелочный манометр, который размещался непосредственно в кабине машины. Рядом находится специальный кран, с помощью которого водитель мог, как снизить давление, так и подкачать шины в зависимости от целей и задач военной техники в моменте. Например, чтобы улучшить проходимость в сложных местах, либо повысить разгон и скорость движения или если, шина повредилась (прокол, осколки, пуля), то путем постоянной подкачки воздуха, обеспечить движение военной техники до пункта назначения.

Классификация датчиков

По измеряемому параметру

  • Датчики давления абсолютного давления
  • избыточного давления
  • разрежения
  • давления-разрежения
  • разности давления
  • гидростатического давления

Датчики расхода

  • Механические счетчики расхода

Перепадомеры
Ультразвуковые расходомеры
Электромагнитные расходомеры
Кориолисовые расходомеры
Вихревые расходомеры
Уровня

  • Поплавковые

Кондуктометрический
Ёмкостные
Радарные
Ультразвуковые
Температуры

  • Термопара

Термометр сопротивления
Пирометр
Датчик теплового потока
Датчик концентрации

  • Кондуктометры

Радиоактивности (также именуются детекторами радиоактивности или излучений)

  • Ионизационная камера

Датчик прямого заряда
Перемещения

  • Абсолютный шифратор

Относительный шифратор
LVDT
Положения

  • Контактные

Бесконтактные
Фотодатчики

  • Фотосопротивление

Фотодиод
Фотоматрица
Датчик углового положения

  • Сельсин

Преобразователь угол -код
RVDT
Датчик вибрации

  • Датчик виброускорения (акселерометр)

Датчик виброскорости (велосиметр)
Датчик виброперемещения (проксиметр)
Датчик механических величин

  • Датчик относительного расширения ротора

Датчик абсолютного расширения
Датчик влажности
Датчик дуговой защиты

По принципу действия

  • Волоконно-оптические
  • Оптические датчики (фотодатчики)
  • Магнитоэлектрический датчик (На основе эффекта Холла)
  • Пьезоэлектрический датчик
  • Тензопреобразователь
  • Ёмкостной датчик
  • Потенциометрический датчик
  • Индуктивный датчик
  • Индукционный датчик

По технологии изготовления

  • Элементные
  • Интегральные
Первичная категория Вторичная категория Тип датчика
Пространственные характеристики Местоположение Наличие объекта Расстояние Ориентация Датчик GPS Магнитометр Датчик присутствия объекта Пассивный инфракрасный датчик Датчик близости объекта Датчик линейного положения Датчик углового положения Датчик наклона Гироскоп Акселерометр Датчик вибрации
Механические характеристики Колебания Сила Ввод данных человеком Датчик вибрации Датчик усилия Сенсорный датчик Сенсорный экран
Характеристики текучих сред Жидкость Газ/жидкость Газ Датчик уровня жидкости Датчик скорости потока жидкости Датчик давления Датчик концентрации газа Датчик скорости потока газа
Характеристики излучения Свет Тепло Звук Фоторезистор Фотодиод Фототранзистор Термистор с отрицательным температурным коэффициентом Термистор с положительным температурным коэффициентом Термопара Резистивный датчик температуры Полупроводниковый датчик температуры Инфракрасный датчик температуры Микрофон
Электрические характеристики Ток Напряжение Датчик тока (амперматр) Датчик напряжения (вольтметр)
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий