Отображение показаний с нескольких ds18b20 с помощью веб-сервера на esp8266 nodemcu

Подготовка IDE Arduino

Существует дополнение для Arduino IDE, которое позволяет программировать ESP8266 NodeMCU. Чтобы подготовить вашу Arduino IDE к работе с ESP8266, следуйте инструкциям, приведенным ниже.

Обзор платы NodeMCU ESP8266 и ее использование в Arduino IDE

Установка библиотеки для DS18B20

Протокол Dallas 1-Wire несколько сложен и требует много кода для парсинга связи. Чтобы скрыть эту ненужную сложность, мы установим библиотеку DallasTemperature.h, чтобы мы могли выполнять простые команды для получения показаний температуры от датчика.

Чтобы установить библиотеку, перейдите в раздел «Скетч»→ «Подключить библиотеку» → «Управление библиотеками…». Подождите, пока менеджер библиотеки загрузит индекс библиотек и обновит список установленных библиотек.

Чтобы отфильтровать результаты поиска, введите «ds18b20». Там должна быть пара записей. Ищите DallasTemperature от Miles Burton. Нажмите на эту запись, а затем выберите Установка.

Рисунок 3 – Установка библиотеки DallasTemperature в Arduino IDE

Эта библиотека DallasTemperature является аппаратно-зависимой библиотекой, которая обрабатывает функции более низкого уровня. Она должна быть связана с библиотекой OneWire для связи с любым устройством 1-Wire, а не только с DS18B20. Установите и эту библиотеку.

Рисунок 4 – Установка библиотеки OneWire в Arduino IDE

Характеристики модуля KY-001.

Модуль датчика температуры KY-001 состоит из цифрового датчика температуры DS18B20, светодиода и резистора. Модуль совместим с популярными электронными платформами, такими как Arduino, Raspberry Pi и Esp8266.

  • Собран на цифровом сенсоре DS18B20, напряжение питания от 3.0 V до 5.5 V.
  • Измеряемая температура -55 ° C до +125 ° C, по Фаренгейту — 67 ° F до 257 ° F.
  • В диапазоне от -10 °C до +85 ° C точность измерения ± 0.5 ° C.
  • Время измерения не более 750 миллисекунд.

Каждый DS18B20 имеет уникальный номер, что позволяет подключить к одной шине большое количество датчиков.

Схема подключения модуля KY-001 (DS18B20) к Arduino.

Схема подключения модуля KY-001 (DS18B20) к Arduino NANO.

Схема подключения модуля KY-001 (DS18B20) к Arduino.

Подключите линию питания (посередине) c к +5 Arduino, землю (-) и GND соответственно. Подключите сигнал (S) к контакту 2 на Arduino.

Подключение (слева направо)

  • GND
  • +5V
  • S — Signal, в примере подключаем ко 2 выводу arduino

Скетч вывода температуры с модуля KY-001 (DS18B20) в монитор порта.

Код ниже будет выводить показания температуры с модуля KY-001 (DS18B20) в монитор последовательного порта каждую секунду.

#include <OneWire.h>
OneWire ds(2);
void setup() {
    Serial.begin(9600);
}
void loop() {
    byte i;
    byte data;
    byte addr;
    float celsius;
    // поиск датчика
    if ( !ds.search(addr)) {
        ds.reset_search();
        delay(250);
        return;
    }
    ds.reset();
    ds.select(addr);
    ds.write(0x44, 1); // измерение температуры
    delay(1000);
    ds.reset();
    ds.select(addr); 
    ds.write(0xBE); // начало чтения измеренной температуры
    //показания температуры из внутренней памяти датчика
    for ( i = 0; i < 9; i++) {
        data = ds.read();
    }
    int16_t raw = (data << 8) | data;
    // датчик может быть настроен на разную точность, выясняем её 
    byte cfg = (data & 0x60);
    if (cfg == 0x00) raw = raw & ~7; // точность 9-разрядов, 93,75 мс
    else if (cfg == 0x20) raw = raw & ~3; // точность 10-разрядов, 187,5 мс
    else if (cfg == 0x40) raw = raw & ~1; // точность 11-разрядов, 375 мс
    // преобразование показаний в градусы Цельсия 
    celsius = (float)raw / 16.0;
    Serial.print("t=");
    Serial.println(celsius);
}

Вот такой результат мы увидим в мониторе порта.

Данный пример достаточно сложный для понимания. Для упрощения работы с датчиком лучше использовать библиотеку DallasTemperature.h. Данная библиотека ставится поверх OneWire.h, т.е. для ее работы должна быть установлена библиотека OneWire.

С библиотекой DallasTemperature устанавливаются примеры. Вы можете воспользоваться любым из них.

Мы рассмотрим более простотой пример, который я взял из библиотеки, и немного его упростил.

#include <OneWire.h>
#include <DallasTemperature.h>
// контакт 2 на Arduino:
#define ONE_WIRE_BUS 2
// создаем экземпляр класса OneWire, чтобы с его помощью
// общаться с однопроводным устройством
OneWire oneWire(ONE_WIRE_BUS);
// передаем объект oneWire объекту sensors:
DallasTemperature sensors(&oneWire);
void setup(void)
{
  Serial.begin(9600);
  // запускаем библиотеку:
  sensors.begin();
}
void loop(void){
  // вызываем функцию sensors.requestTemperatures(),
  // которая приказывает всем устройствам, подключенным к шине
  sensors.requestTemperatures();
  Serial.print("Celsius temperature: ");
  //  в Цельсиях:
  Serial.print(sensors.getTempCByIndex(0));
  Serial.print(" - Fahrenheit temperature: ");
  //  в Фаренгейтах:
  Serial.println(sensors.getTempFByIndex(0));
  delay(1000);
}

В данном примере температура выводится 1 раз в секунду, и при этом выводится температура в Цельсиях и Фаренгейтах в монитор последовательного порта.

Как видите, данный пример намного меньше и более понятен для новичка.

KY-001датчик температуры DS18B20 к ArduinoKY-001

Купить модуль KY-001 можно тут:

Описание всех датчиков из набора «37 in 1 Sensors Kit for Arduino» вы можете посмотреть на странице описания данного набора модулей для Arduino.

Понравился Урок KY-001 модуль температуры на базе DS18B20. Подключение Arduino? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу , в группу на .

Спасибо за внимание!

Технологии начинаются с простого!

Фотографии к статье

Файлы для скачивания

Скачивая материал, я соглашаюсь с
Правилами скачивания и использования материалов.

Модуль KY-001 датчика температуры DS18B20.pdf 82 Kb 39 Скачать
Скетч вывода температуры с модуля KY-001 .ino 1 Kb 39 Скачать
Код с использованием бмблиотеки DallasTemperature.h.ino 1 Kb 40 Скачать
Библиотека DallasTemperature .zip 31 Kb 47 Скачать

History

First version

Includes negative temperature support

Updated by Tim Newsome to include support for multiple ICs on the same OneWire

A slightly leaner version of 2.0.0

James Whiddon has re-factored the core code to provide accurate timings, increased sensor resolution, detect parasite power (etc).

Another addition by James Whiddon. He has re-factored much of the original code and included a new example sketch.

Includes a fix for the S series of devices by Nic Johns

Heavily re-factored version of 3.0.0b. Includes 4 new sketches and several additional functions to make sketches simple for new user who ‘just want to get going’

Separated OneWire and DallasTemperature libraries so you only need to install one if you’ve already got OneWire installed (avoids those annoying conflicts). This includes full support for alarms and a supporting example. We have also included a couple of definitions should you want to remove the alarm functionality to save some memory

  • bool hasAlarm(void); This allows you to know if ANY device is reporting an alarm without having to scan each device on the bus.
  • void setAlarmHandler(AlarmHandler *); You can define a function that will be executed when an alarm condition

exists on a device. The function takes a device address as an argument. The handler is executed when processAlarms() is called.

  • void processAlarms(void); Used in loop(). Performs an alarmSearch() and calls the appropriate AlarmHandler for any devices with alarms.
  • AlarmHandler.pde example included.

Core Updates:

  • private float calculateTemperature(uint8_t*, uint8_t*); This was done so the hasAlarm(uint8_t*) function didn’t have to read the scratchpad twice or include duplicate code for measuring the temperature. Change is invisible to the end user.
  • Updated keywords.txt

— Thanks James for another update

Fixes:

Fixed incorrect address array sizes in hasAlarm and processAlarms

setResolution now only reads the scratchpad once

setHighAlarmTemp and setLowAlarmTemp now read the scratchpad to ensure

the scratchpad contains the data for the device address you’re setting

Changes:

Changed DEVICE_DISCONNECTED value to -127 so it can be passed as a

result in functions returning a char value

getLowAlarmTemp and getHighAlarmTemp now return DEVICE_DISCONNECTED if

the device is disconnected

Added typedef uint8_t DeviceAddress (hopefully to help prevent

mistakes like were in hasAlarm and processAlarms)

Added typedef uint8_t ScratchPad

Updated demo sketches to use DeviceAddress typedef

Guil Barros submitted two additional functions, GetTemperatureByIndex & GetTemperatureByAddress to make life a little easier

Rob Tillaart was kind enough to introduce a new revision to the library, asynchronous calls. When you request a temperature you can choose to manage the delay in your own code and continue processing other data. This code is still considered beta so if you spot any issues let me know.

Daniel Seither has cleaned up some of the example files for better legibility, thanks Daniel.

Описание датчика DS18B20 для Arduino

Микросхема имеет три выхода, из которых для данных используется только один, два остальных – это земля и питание. Число проводов можно сократить до двух, если использовать схему с паразитным питанием и соединить Vdd с землей. К одному проводу с данными можно подключить сразу несколько датчиков DS18B20 и в плате Ардуино будет задействован всего один пин.

Особенности цифрового датчика DS18B20

Погрешность измерения не больше 0,5 С (для температур от -10С до +85С), что позволяет точно определить значение температуры. Не требуется дополнительная калибровка.
Температурный диапазон измерений лежит в пределах от -55 С до +125 С.
Датчик питается напряжением от 3,3В до 5В.
Можно программно задать максимальную разрешающую способность до 0,0625С, наибольшее разрешение 12 бит.
Присутствует функция тревожного сигнала.
Каждое устройство обладает своим уникальным серийным кодом.
Не требуются дополнительные внешние элементы.
Можно подключить сразу до 127 датчиков к одной линии связи.
Информация передается по протоколу 1-Wire.
Для присоединения к микроконтроллеру нужны только 3 провода.
Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода

Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности –  9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Во время включения питания датчик находится в состоянии покоя. Для начала измерения контроллер Ардуино выполняет команду «преобразование температуры». Полученный результат сохранится в 2 байтах регистра температуры, после чего датчик вернется в первоначальное состояние покоя. Если схема подключена в режиме внешнего питания, микроконтроллер регулирует состояние конвертации. Во время выполнения команды линия находится в низком состоянии, после окончания программы линия переходит в высокое состояние. Такой метод не допустим при питании от паразитной емкости, так как на шине постоянно должен сохраняться высокий уровень сигнала.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Создание веб-сервера NodeMCU ESP8266, используя Wi-Fi режим Station (STA)

Теперь мы собираемся настроить ESP8266 в режим станции (STA) и создать веб-сервер для выдачи веб-страниц любому подключенному клиента в существующей сети.

Если вы хотите узнать о создании веб-сервера с ESP8266 NodeMCU в режиме AP/STA, ознакомьтесь с этим руководством:

Создание простого веб-сервера на ESP8266 NodeMCU в Arduino IDE

Прежде чем начать загружать скетч, вам нужно внести в него некоторые изменения, чтобы он заработал у вас.

Чтобы ESP8266 NodeMCU мог установить соединение с существующей сетью, вам необходимо изменить следующие две переменные в соответствии с учетными данными вашей сети.

Перед выдачей веб-страницы ESP8266 считывает температуру с каждого DS18B20 по заданному адресу, поэтому вам необходимо изменить адреса датчиков DS18B20 на те, что вы выяснили в предыдущем скетче.

После внесения этих изменений, попробуйте загрузить скетч.

Описание датчика ds18b20 и его характеристики

DS18B20 — это датчик, отслеживающий изменения терморежимов. Он обладает следующими характеристиками:

  1. Широкий диапазон измерения шкалы температуры: -55 …+125°С. Пользователь имеет возможность самостоятельно задавать и изменять границы, прибор будет давать сигнал о выходе температуры за их пределы.
  2. Высокая точность измерения. Погрешность сенсора — не более 0,5°C. Датчик калибровали уже в процессе изготовления, никаких дополнительных настроек впоследствии задавать не нужно.
  3. Разрешающая способность — до 0,0625°C. Задается с помощью программы, параметр достигается при максимальном разрешении 12 бит.
  4. Последовательный протокол передачи информации. Чтобы подсоединить термодатчик к микроконтроллеру, необходимы лишь 3 кабеля.
  5. На 1 линию связи есть возможность подсоединить до 127 датчиков.
  6. Способность автоматически изменять точность измерений и пути взаимодействия с контроллером.
  7. Возможность сократить количество проводов до 2 за счет схемы с паразитным питанием, задействовав лишь 1 пин.

С использованием водонепроницаемого датчика можно создать термометр для уличного и домашнего использования, устойчивый к высоким температурам и влажности.

Типы корпусов

Существуют 3 разновидности корпуса:

  • 8-Pin SO (150 mils);
  • 8-Pin SOP;
  • 3-Pin TO-92.

От этих вариантов зависит, каким окажется способ подсоединения термодатчика к Arduino NANO или UNO.

Чтобы подключить первый, нужен подтягивающий резистор на 4,7 кОм.

Второй продается полностью укомплектованным и имеет его в наличии.

Последний является самым широко используемым. Его создают влагозащитным, поэтому есть возможность использовать прибор для подводных замеров температуры.

Особенности цифрового DS18B20

Прибор обладает следующими особенностями:

  • питание требует напряжения от 3,3 до 5 В;
  • в наличии опция сигнала тревоги;
  • у каждого устройства есть неповторимый серийный код;
  • не нуждается во вспомогательных внешних дополняющих;
  • получение и выдача сведений осуществляется по протоколу OneWire.

Для индикаторов возможен режим паразитного/фантомного питания.

Датчики температуры и влажности DHT11 и DHT22 и Arduino

В статье рассмотрены основы работы с недорогими датчиками температуры и влажности серии DHT.

Эти сенсоры простые и медленные, но при этом отлично подходят для хобби-проектов на Arduino. Датчики DHT состоят из двух основных частей: ёмкостный датчик влажности и термистор. Также в корпусе установлен простенький чип для преобразования аналогового сигнала в цифровой. Считывать цифровой сигнал на выходе достаточно просто, можно использовать любой контроллер, не обязательно Arduino.

Технические характеристики DHT11 и DHT22

Существуют две версии сенсоров DHT. Выглядят они почти одинаково. Распиновка тоже одинаковая. Основные отличия – в технических характеристиках:

DHT11:

  • Очень дешевый.
  • Питание от 3 до 5В.
  • Максимально потребляемый ток – 2.5мА при преобразовании (при запросе данных).
  • Рассчитан на измерение уровня влажности в диапазоне от 20% до 80%. При этом точность измерений находится в диапазоне 5%.
  • Измеряет температуру в диапазоне от 0 до 50 градусов с точностью плюс-минус 2%.
  • Частота измерений не более 1 Гц (одно измерение в секунду).
  • Размер корпуса: 15.5 мм x 12 мм x 5.5 мм.
  • 4 коннектора. Расстояние между соседними – 0.1″.

DHT22:

  • Дешевый.
  • Питание от 3 до 5В.
  • Максимально потребляемый ток – 2.5мА при преобразовании (при запросе данных).
  • Рассчитан на измерение уровня влажности в диапазоне от 0% до 100%. При этом точность измерений находится в диапазоне 2%-5%.
  • Измеряет температуру в диапазоне от -40 до 125 градусов с точностью плюс-минус 0.5 градусов по Цельсию.
  • Частота измерений до 0.5 Гц (одно измерение за 2 секунды).
  • Размер корпуса: 15.1 мм x 25 мм x 7.7 мм.
  • 4 коннектора. Расстояние между соседними – 0.1″.

Как видите, DHT22 более точный и имеет больший диапазон измеряемых значений. Оба датчика имеют по одному цифровому выходу. Запросы к ним можно отправлять не чаще чем один в секунду или две.

Подключение датчиков DHT к Arduino

Ссылки для заказа электронного оборудования, которое использовалось в примере ниже из Китая

Подключаются датчики легко. Так как у них достаточно длинные коннекторы 0.1″, можно устанавливать их непосредственно на макетную или монтажную плату (смотрите на рисунке ниже).

Непосредственное подключение к Arduino тоже простое. На сенсоре 4 коннектора:

  • Питание (VCC) – от 3 до 5 В.
  • Вывод данных.
  • Не подключается.
  • Земля.

Коннектор 3 просто игнорируйте, он не подключается. Желательно подключить подтягивающий резистор на 10 кОм между питанием и сигналом. На Arduino есть встроенные резисторы, но их номинал 100кОм нам не подойдет.

Arduino Uno и Датчик температуры и влажности DHT11 (DHT22)Arduino Uno и Датчик температуры и влажности DHT11 (DHT22)

На рисунке ниже приведена схема подключения DHT11 к Arduino. Подключите сигнал с датчика к пину 2, чтобы схема соответствовала примеру скетча, который приведен ниже. Этот пин можно изменить с соответствующими правками в коде.

Считывание данных с датчиков DHTxx

Для проверки скетча мы используем Arduino. Можно использовать любой другой микроконтроллер, который поддерживает тайминг в микросекундах.

Для начала скачайте библиотеку для работы с DHT датчиками здесь: Github. Для загрузки нажмите кнопку DOWNLOADS в верхнем правом углу.

Переименуйте папку DHT и убедитесь, что в ней есть файл dht.cpp и другие. После этого переместите папку DHT в папку arduinosketchfolder/libraries/ . Возможно вам придется создать подпапку для библиотек, если вы впервые интегрируете библиотеку. Перезагрузите Arduino IDE.

Теперь загрузите скетч: Examples->DHT->DHTtester. Выглядит программа примерно так:

//#define DHTTYPE DHT22 // DHT 22 (AM2302)

И уберите комментарий со строки:

#define DHTTYPE DHT11 // DHT 11

Эти настройки помогают снимать правильные значения именно с вашей модели датчика. В окне серийного монитора этобудет выглядеть примерно так:

Вы должны увидеть показания температуры и влажности. Подышав на датчик, можно отследить изменения показаний. В этом случае уровень влажности должен увеличиться.

Если Вам необходимы даташиты на датчики, просмотреть и скачать их можно по ссылкам:

Datasheet DHT11

Datasheet DHT22

Датчики температуры и влажности DHT11 и DHT22

В данной статье я хотел бы рассказать о недорогих цифровых датчиках температуры и влажности DHT11 и DHT22.

Данные датчики не отличаются высоким быстродействием и точностью, однако могут найти свое применение в радиолюбительских проектах из-за своей невысокой стоимости. Датчик DHT состоит из емкостного датчика влажности и термистора.

Также, датчик содержит в себе простенький АЦП для преобразования аналоговых значений влажности и температуры.

Отличия DHT11 и DHT22

По цоколевке данные датчики идентичны, однако немного различаются характеристиками.

DHT11:

  • Очень низкая стоимость
  • Питание и I/O 3-5 В
  • Определение влажности 20-80% с 5% точностью
  • Определение температуры 0-50 град. с 2% точностью
  • Частота опроса не более 1 Гц (не более раза в 1 сек.)
  • Размеры 15.5мм x 12мм x 5.5мм
  • 4 вывода с расстоянием между ножками 0.1″

DHT22:

  • Низкая стоимость
  • Питание и I/O 3-5 В
  • Определение влажности 0-100% с 2-5% точностью
  • Определение температуры -40 — 125 град. с точностью ±0.5 град.
  • Частота опроса не более 0.5 Гц (не более раза в 2 сек.)
  • Размеры 15.1мм x 25мм x 7.7мм
  • 4 вывода с расстоянием между ножками 0.1″

Как видно, сенсор DHT22 имеет более лучшие характеристики. Однако оба датчика медлительны и вы не сможете считывать с них информацию чаще, чем раз в 1 или 2 сек.

Подключение

Датчики имеют стандартные выводы и поэтому легко становятся на макетную плату. DHT имеет 4 вывода:

  1. Vcc (3-5V питание)
  2. Data out — Вывод данных
  3. Не используется
  4. Общий

При подключении к МК, вы можете между выводами Vcc и Data разместить подтягивающий pull-up резистор номиналом 10 кОм. Плата Arduino имеет встроенные pull-up, однако они очень слабенькие — порядка 100 кОм. Рассмотрим подключение датчика к популярной сейчас плате Arduino. На рисунке ниже, показано подключение датчика к Arduino, выход с датчика подается на 2 pin платы, если нужно, в скетче поменяйте на какой-либо другой.

Скачать библиотеку для работы датчиков DHT с Arduino можно здесь. Там же и пример

Если вы будете использовать датчик DHT11, то закомментируйте данную строку://#define DHTTYPE DHT22 // DHT 22 (AM2302)и раскоментируйте эту:#define DHTTYPE DHT11 // DHT 11 Загрузите скетч в контроллер и проверьте правильность работы при помощи Serial Monitor:

Даташиты: DHT11, DHT22

ИсточникТолько зарегистрированные и авторизованные пользователи могут оставлять комментарии.

Термистор

Термистор — это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры.

За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры.

Преимущества термисторов

  • Большая скорость реагирования на изменения температуры, точность.
  • Низкая стоимость.
  • Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
  • Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.

Зависимости сопротивления от температуры

Зависимость сопротивления от температуры выражается следующим уравнением:

где A, B, C — это константы (предоставляются условиями расчёта), R — сопротивление в Омах, T — температура в Кельвинах. Вы можете легко рассчитать изменение температуры от изменения сопротивления или наоборот.

Как использовать термистор?

Термисторы оцениваются по их резистивному значению при комнатной температуре (25°C). Термистор-это пассивное резистивное устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.

Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.

Следовательно, его выходное напряжение может быть рассчитано следующим образом:

При 25°C, RNTC = 2200 Ом;

При 80°C, RNTC = 50 Ом;

Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры

Выходное напряжение на резисторе и температура линейно связаны.

Example

The TCL library is intended to be simple and intuitive to use. You only need 3 fundamental commands for a single IC. (Following code taken from «Simple.pde» 3.1.0PRE)

#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into pin 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature. 
DallasTemperature sensors(&oneWire);

void setup(void)
{
  // start serial port
  Serial.begin(9600);
  Serial.println("Dallas Temperature IC Control Library Demo");

  // Start up the library
  sensors.begin(); // IC Default 9 bit. If you have troubles consider upping it 12. Ups the delay giving the IC more time to process the temperature measurement
}


void loop(void)
{ 
  // call sensors.requestTemperatures() to issue a global temperature 
  // request to all devices on the bus
  Serial.print("Requesting temperatures...");
  sensors.requestTemperatures(); // Send the command to get temperatures
  Serial.println("DONE");
  
  Serial.print("Temperature for Device 1 is: ");
  Serial.print(sensors.getTempCByIndex(0)); // Why "byIndex"? You can have more than one IC on the same bus. 0 refers to the first IC on the wire
  
}

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. Скачать OneWire можно здесь. Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include <OneWire.h>

Основные команды библиотеки OneWire:

  • search(addressArray) – ищет температурный датчик, при нахождении в массив addressArray записывается его код, в ином случае – false.
  • reset_search() – производится поиск на первом приборе.
  • reset() – выполнение сброса шины перед тем, как связаться с устройством.
  • select(addressArray) – выбирается устройство после операции сброса, записывается его ROM код.
  • write(byte) – производится запись байта информации на устройство.
  • write(byte, 1) – аналогично write(byte), но в режиме паразитного питания.
  • read() – чтение байта информации с устройства.
  • crc8(dataArray, length) – вычисление CRC кода. dataArray – выбранный массив, length – длина кода.

Важно правильно настроить режим питания в скетче. Для паразитного питания в строке 65 нужно записать ds.write(0x44, 1);

Для внешнего питания в строке 65 должно быть записано ds.write(0x44).

Write позволяет передать команду на термодатчик. Основные команды, подаваемые в виде битов:

  • 0x44 – измерить температуру, записать полученное значение в SRAM.
  • 0x4E – запись 3 байта в третий, четвертый и пятый байты SRAM.
  • 0xBE – последовательное считывание 9 байт SRAM.
  • 0х48 – копирование третьего и четвертого байтов SRAM в EEPROM.
  • 0xB8 – копирование информации из EEPROM в третий и четвертый байты SRAM.
  • 0xB4 – возвращает тип питания (0 – паразитное, 1 – внешнее).

Артиллерийские единицы

Исходный код программы

Полный код программы представлен в конце статьи, здесь же сначала рассмотрим его наиболее важные фрагменты.

Для выполнения математических операций в программе мы должны подключить заголовочный файл библиотеки “#include <math.h>”, а для работы с ЖК дисплеем – подключить библиотеку “#include <LiquidCrystal.h>». Далее в функции setup() мы должны инициализировать ЖК дисплей.

Arduino

Void setup(){
lcd.begin(16,2);
lcd.clear();
}

1
2
3
4

Voidsetup(){

lcd.begin(16,2);

lcd.clear();

}

Значение температуры мы будем рассчитывать в программе с помощью рассмотренного выше уравнения Стейнхарта-Харта.

Arduino

float a = 1.009249522e-03, b = 2.378405444e-04, c = 2.019202697e-07;
float T,logRt,Tf,Tc;
float Thermistor(int Vo) {
logRt = log(10000.0*((1024.0/Vo-1)));
T = (1.0 / (A + B*logRt + C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Stein-Hart
Tc = T — 273.15; // переводим температуру из кельвинов в градусы Цельсия
Tf = (Tc * 1.8) + 32.0; // переводим температуру в шкалу Фаренгейта
return T;
}

1
2
3
4
5
6
7
8
9

floata=1.009249522e-03,b=2.378405444e-04,c=2.019202697e-07;

floatT,logRt,Tf,Tc;

floatThermistor(intVo){

logRt=log(10000.0*((1024.0Vo-1)));

T=(1.0(A+B*logRt+C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Stein-Hart

Tc=T-273.15;// переводим температуру из кельвинов в градусы Цельсия

Tf=(Tc*1.8)+32.0;// переводим температуру в шкалу Фаренгейта

returnT;

}

Также в программе мы считываем значение с аналогового входа платы Arduino.

Arduino

lcd.print((Thermistor(analogRead(0))));

1 lcd.print((Thermistor(analogRead())));

Внешний вид работы нашего проекта показан на следующем рисунке – на ЖК дисплее выводятся значения температуры в кельвинах, градусах Цельсия и по шкале Фаренгейта.

Схему можно запитать по кабелю USB или использовать адаптер на 12 В.

Далее представлен полный текст программы.

Arduino

#include <math.h>
#include «LiquidCrystal.h»
LiquidCrystal lcd(44,46,40,52,50,48);
float A = 1.009249522e-03, B = 2.378405444e-04, C = 2.019202697e-07;
float T,logRt,Tf,Tc;
float Thermistor(int Vo) { // функция для расчета значения температуры
logRt = log(10000.0*((1024.0/Vo-1)));
T = (1.0 / (A + B*logRt + C*logRt*logRt*logRt)); // рассчитываем значение температуры в кельвинах по формуле Стейнхарта-Харта
Tc = T — 273.15; // переводим температуру из кельвинов в градусы
Tf = (Tc * 1.8) + 32.0; // переводим температуру в шкалу Фаренгейта
return T;
}
void setup(){
lcd.begin(16,2);
lcd.clear();
}
void loop()
{
lcd.setCursor(0,0);
lcd.print(«Temp:»);
lcd.print((Thermistor(analogRead(0))));
lcd.print(«k «);

lcd.setCursor(0,1);
lcd.print((Tc));
lcd.print(» C ;»);
lcd.setCursor(9,1);
lcd.print((Tf));
lcd.print(» F»);
delay(800);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <math.h>
#include «LiquidCrystal.h»

LiquidCrystallcd(44,46,40,52,50,48);

floatA=1.009249522e-03,B=2.378405444e-04,C=2.019202697e-07;

floatT,logRt,Tf,Tc;

floatThermistor(intVo){// функция для расчета значения температуры

logRt=log(10000.0*((1024.0Vo-1)));

T=(1.0(A+B*logRt+C*logRt*logRt*logRt));// рассчитываем значение температуры в кельвинах по формуле Стейнхарта-Харта

Tc=T-273.15;// переводим температуру из кельвинов в градусы

Tf=(Tc*1.8)+32.0;// переводим температуру в шкалу Фаренгейта

returnT;

}

voidsetup(){

lcd.begin(16,2);

lcd.clear();

}

voidloop()

{

lcd.setCursor(,);

lcd.print(«Temp:»);

lcd.print((Thermistor(analogRead())));

lcd.print(«k «);

lcd.setCursor(,1);

lcd.print((Tc));

lcd.print(» C ;»);

lcd.setCursor(9,1);

lcd.print((Tf));

lcd.print(» F»);

delay(800);

}

Примеры работы для Arduino

Один датчик

Рассмотрим простой пример — подключения одного датчика.

Сенсор подключается к управляющей плате через один сигнальный пин.
При подключении к Arduino в компактном формфакторе, например Arduino Micro или Iskra Nano Pro, воспользуйтесь макетной платой и парочкой нажимных клеммников.

Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.

При коммуникации сенсора со стандартными платами Arduino формата Rev3, Arduino Uno или Iskra Neo, используйте Troyka Slot Shield совместно с модулем подтяжки.

Код программы

Выведем температуру сенсора в Serial-порт.

simple.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
 
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensor(&oneWire);
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // начинаем работу с датчиком
  sensor.begin();
  // устанавливаем разрешение датчика от 9 до 12 бит
  sensor.setResolution(12);
}
 
void loop(){
  // переменная для хранения температуры
  float temperature;
  // отправляем запрос на измерение температуры
  sensor.requestTemperatures();
  // считываем данные из регистра датчика
  temperature = sensor.getTempCByIndex();
  // выводим температуру в Serial-порт
  Serial.print("Temp C: ");
  Serial.println(temperature);
  // ждём одну секунду
  delay(1000);
}

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.

Код программы

Просканируем все устройства на шине и выведем температуру каждого сенсора отдельно в Serial-порт.

multipleSensors.ino
// библиотека для работы с протоколом 1-Wire
#include <OneWire.h>
// библиотека для работы с датчиком DS18B20
#include <DallasTemperature.h>
 
// сигнальный провод датчика
#define ONE_WIRE_BUS 5
 
// создаём объект для работы с библиотекой OneWire
OneWire oneWire(ONE_WIRE_BUS);
// создадим объект для работы с библиотекой DallasTemperature
DallasTemperature sensors(&oneWire);
// создаём указатель массив для хранения адресов датчиков
DeviceAddress *sensorsUnique;
// количество датчиков на шине
int countSensors;
 
// функция вывода адреса датчика
void printAddress(DeviceAddress deviceAddress){
  for (uint8_t i = ; i < 8; i++){
    if (deviceAddressi < 16) Serial.print("0");
    Serial.print(deviceAddressi, HEX);
  }
}
 
void setup(){
  // инициализируем работу Serial-порта
  Serial.begin(9600);
  // ожидаем открытия Serial-порта
  while(!Serial);
  // начинаем работу с датчиком
  sensors.begin();
  // выполняем поиск устройств на шине
  countSensors = sensors.getDeviceCount();
  Serial.print("Found sensors: ");
  Serial.println(countSensors);
  // выделяем память в динамическом массиве под количество обнаруженных сенсоров
  sensorsUnique = new DeviceAddresscountSensors;
 
  // определяем в каком режиме питания подключены сенсоры
  if (sensors.isParasitePowerMode()) {
    Serial.println("Mode power is Parasite");
  } else {
    Serial.println("Mode power is Normal");
  }
 
  // делаем запрос на получение адресов датчиков
  for (int i = ; i < countSensors; i++) {
    sensors.getAddress(sensorsUniquei, i);
  }
  // выводим полученные адреса
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Address: ");
    printAddress(sensorsUniquei);
    Serial.println();
  }
  Serial.println();
  // устанавливаем разрешение всех датчиков в 12 бит
  for (int i = ; i < countSensors; i++) {
    sensors.setResolution(sensorsUniquei, 12);
  }
}
 
void loop(){
  // переменная для хранения температуры
  float temperature10;
  // отправляем запрос на измерение температуры всех сенсоров
  sensors.requestTemperatures();
  // считываем данные из регистра каждого датчика по очереди
  for (int i = ; i < countSensors; i++) {
    temperaturei = sensors.getTempCByIndex(i);
  }
  // выводим температуру в Serial-порт по каждому датчику
  for (int i = ; i < countSensors; i++) {
    Serial.print("Device ");
    Serial.print(i);
    Serial.print(" Temp C: ");
    Serial.print(temperaturei);
    Serial.println();
  }
  Serial.println();
  // ждём одну секунду
  delay(1000);
}

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий