Принцип работы абсолютного энкодера

Выбор лучших энкодеров для Ардуино

Чтобы упростить процесс выбора энкодера к Arduino, здесь будет подборка каждого варианта.

Поворотный энкодер EC11

Нужен простой угловой энкодер, который поможет начать распознавать вращающийся вал с помощью Ардуино? Тогда стоит выбрать EC11.

Устройство имеет в общей сложности 5 контактов, 3 с одной стороны для вращательного кодирования, которым требуется простая цепь для подачи постоянного тока 5В. Два других замыкаются при нажатии, поэтому нет недостатка в какой-либо функциональности при использовании этого энкодера с Ардуино.

Магнитный энкодер Grove AS5600

Нужно устройство, которое может одновременно работать как магнитный потенциометр или магнитный энкодер с отличной надежностью и долговечностью? Тогда это устройство отлично подойдет.

Оно не только работает в обоих направлениях, но по сравнению с традиционным энкодером/потенциометром, Grove AS5600 бесконтактный, без ограничения угла поворота, обеспечивает высокоточный сигнал. Все это стало возможным благодаря встроенному AS5600, основанному на эффекте Холла.

Grove — оптический поворотный прибор

Этот оптический датчик угла поворота (для уно, нано и других) включает в себя инфракрасный излучатель и два фототранзисторных детектора. Подходит не только для определения скорости/вращения, но и для определения направления вращения.

Его особенности:

  • двойные фототранзисторные детекторы, могут определять направление вращения;
  • встроенные светодиодные индикаторы;
  • интерфейс Grove для простоты использования с Ардуино.

Типы приборов

Устройства бывают нескольких типов. Типы энкодеров: инкрементальные и абсолютные, оптические и механические. Далее будет рассмотрено, что такое энкодер инкрементального типа, а затем обозрены другие типы.

Инкрементальные энкодеры

Они распространены больше всего. В инкрементальном варианте вращательное движение вала преобразовывается в электрические импульсы. Его конструкция состоит из диска с прорезями и оптических датчиков.

Конструкция датчиков поворота данного типа, не позволяет им сообщать свое абсолютное состояние, а только величину изменения положения. Простой образец инкрементального устройства — шайба регулировки громкости автомобильной магнитолы.

Этот вид работает следующим образом. У него есть начальная нуль-метка, или выход Z, и два дополнительных выхода — A и B. Датчик создает две линии сигналов со смещенными на четверть фазы импульсами относительно друг друга. Разница импульсов указывает на направление вращения, а их количество — на угол поворота.

Разновидность инкрементальных энкодеров — сдвоенные, или квадратурные. Они состоят из двух датчиков, которые срабатывают со смещением в полшага. Квадратурные считают количество импульсов и учитывают направление.

У инкрементальных два главных минуса. Во-первых, нужно постоянно обрабатывать и анализировать сигнал, для чего используют контроллер и специальную программу. Во-вторых, они требуют синхронизации с нулевой меткой после включения. Для этого требуется инициализация для поиска выхода Z.

Абсолютные энкодеры

Датчики такого типа устроены более сложно. Но они позволяют определить величину угла поворота сразу после включения, не требуя синхронизации с нулевой меткой.

В основе конструкции поворотный круг, разделенный на одинаковые по размеру пронумерованные секторы. После включения устройства определяется номер сектора, на котором оно находится. Такое решение позволяет сразу зафиксировать положение, угол и направление вращения.

Принцип работы абсолютного энкодера основан на использовании кода Грея для определения текущего положения и других параметров. В них не требуется синхронизация с нулевым значением.

Единственный существенный недостаток этого типа угловых датчиков — необходимость все время переводить код Грея в двоичный код для регистрации положения датчика.

Многооборотные датчики поворота

Абсолютные энкодеры могут быть однооборотными и многооборотными.

Однооборотные показывают абсолютное значение после одного оборота. После этого код возвращается к начальному значению. Такие датчики используют в основном для измерения угла поворота.

Если нужно измерять обороты в системах с линейным перемещением, используют многооборотные энкодеры. В них есть дополнительный передаточный механизм, благодаря чему они регистрируют, помимо угла поворота, количество оборотов.

Оптические энкодеры

Диск оптического энкодера изготавливают из стекла. Отличие этого типа угловых датчиков, в наличии оптического растора, перемещающегося при вращении вала. При этом он создает поток света, который регистрирует фотодатчик.

Каждому положению энкодера соответствует определенный цифровой код, который вместе с количеством оборотов составляет единицу измерения устройства.

Оптические угловые датчики бывают фотоэлектрическими и магнитными.

В основе работающих датчиков лежит магнитный эффект Холла. Их точность и разрешение ниже, однако, и конструкция проще. Они лучше переносят сложные условия работы и занимают меньше места.

Фотоэлектрические датчики основаны на том же принципе. В них свет преобразуется в электрические сигналы.

Механические энкодеры

Также называются аналоговыми. Их диск изготавливают из диэлектрика и наносят на него выпуклые или непрозрачные области. Набор контактов и переключателей, позволяет вычислить значение абсолютного угла. Механические энкодеры также используют код Грея.

Один из недостатков этих энкодеров в том, что со временем контакты разбалтываются. В результате сигнал искажается, и прибор выдает неточные значения. А это сказывается на общей работоспособности. Оптические и магнитные энкодеры не имеют такого недостатка.

Преимущества специализированных преобразователей частоты

При использовании специализированных частотников и интегрируемых и внешних котроллеров, отпадет необходимость производить измерения и расчеты вручную. Эти устройства комплектуют программным обеспечением, позволяющим нивелировать дребезг контактов энкодеров, а также избавляет от необходимости писать программы самостоятельно.

Частотно-регулируемый привод способен выполнять следующие базовые функции:

  • Определения абсолютной координаты для импульсного энкодера (Home).
  • Настройки передаточных отношений и смещений в режиме On-line.
  • Синхронизации скорости, положения по метке ведущего и ведомого привода в следящей системе регулирования.
  • Приема и передачи данных по поддерживаемым протоколам связи.
  • Абсолютного и относительного позиционирования.
  • Автоматического вычисления, сравнения данных от датчиков.
  • Совместимости с различными типами энкодров, поддержка разных конфигураций системы управления.
  • Отладки встроенных программ.

Программирование преобразователей частоты и контроллеров движения осуществляется при помощи ПО, разработанного производителем. Схемы подключения различных типов энкодеров представлены в паспорте электропривода.

Для построения систем точного позиционирования на базе частотных преобразователей и контроллеров Danfoss не требуется глубоких знаний сервотехнологии и навыков написания программ. Эти устройства разработаны по принципу “ все в одном”. Такие приводы широко используются для станков с ЧПУ, кранов, высокоточных дозаторов и другого промышленного оборудования.

Источник

Подключение инкрементного энкодера к Ардуино

пример создания такого меню

  • CLK и DT — выводы энкодера, они подтянуты к линии питания резисторами 10кОм;
  • SW — вывод кнопки, при нажатии вывод замыкается на землю;
  • + и GND — линии питания и земли. Данный энкодер является механическим, питание для него не требуется, линии нужны для цепи с подтягивающими резисторами.

Подключим энкодер к Ардуино по следующей схеме:

ссылка

#define pin_CLK 2
#define pin_DT  4
#define pin_Btn 3

unsigned long CurrentTime, LastTime;
enum eEncoderState {eNone, eLeft, eRight, eButton};
uint8_t EncoderA, EncoderB, EncoderAPrev;
int8_t counter;
bool ButtonPrev;

eEncoderState GetEncoderState() {
  
  eEncoderState Result = eNone;
  CurrentTime = millis();
  if (CurrentTime - LastTime >= 5) {
    
    LastTime = CurrentTime;
    if (digitalRead(pin_Btn) == LOW ) {
      if (ButtonPrev) {
        Result = eButton; 
        ButtonPrev = ;
      }
    }
    else {
      ButtonPrev = 1;
      EncoderA = digitalRead(pin_DT);
      EncoderB = digitalRead(pin_CLK);
      if ((!EncoderA) && (EncoderAPrev)) { 
        if (EncoderB) Result = eRight;     
        else          Result = eLeft;      
      }
      EncoderAPrev = EncoderA; 
    }
  }
  return Result;
}

void setup() {
  pinMode(pin_DT,  INPUT);
  pinMode(pin_CLK, INPUT);
  pinMode(pin_Btn, INPUT_PULLUP); 
  Serial.begin(9600);
  counter = ;
}

void loop() {
  switch (GetEncoderState()) {
    case eNone: return;
    case eLeft: {   
        counter--;
        break;
      }
    case eRight: {  
        counter++;
        break;
      }
    case eButton: { 
        counter = ;
        break;
      }
  }
  Serial.println(counter);
}
EncoderA = digitalRead(pin_CLK);
EncoderB = digitalRead(pin_DT);

Особенности настроек и подключения

Монтажом энкодеров должен заниматься только профессиональный мастер. Они монтируются обычно на том валу, с которого считывается информация. Применяются переходные муфты для компенсации различия размеров. Корпус энкодера необходимо как можно более прочно закрепить.

Если же речь идет о монтажных работах на полом валу, то требуется прибегнуть к иному методу. В этом случае вал включается внутри датчика и монтируется внутри полой втулки. При этом сам корпус считывающего устройства закреплять не следует.

Если брать самый элементарный случай подключения, то, по возможности, следует подключить выход преобразователя к входу счетного устройства, и запрограммировать его на определенные параметры скорости.

В основном, преобразователи применяются совместно с контроллерами. К преобразователю необходимо присоединить нужные выходы. После этого программой будет автоматически определено, какое положение объект занимает в данный момент времени, какова его скорость, каким ускорением он обладает.

Распиновка и схема энкодера

Распиновка энкодера

Схема энкодера

К кому обратиться?

Специализированный сервисный центр «Кернел» выполнит профессиональное подключение, настройку (юстировку) и программирование энкодеров любых производителей в сжатые сроки и за разумные деньги.

подключение, настройку и программирование энкодеров производят квалифицированные специалисты с инженерным образованием.

Специалисты нашей компании за время ее существования произвели настройку и программирование более тысячи энкодеров выпущенных под разными брендами.

Мы уверенны в качестве выполненных работ и даем гарантию на все виды работ, включая настройку и программирование энкодера шесть месяцев.

Как с нами связаться

Вас заинтересовало предложение по подключению, настройке и программированию энкодеров? Задайте их нашим менеджерам. Связаться с ними вы можете несколькими способами:

  • Заказав обратный звонок (кнопка в правом нижнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Либо позвонив по номеру: +7(8482) 79-78-54; +7(917) 121-53-01
  • Написав на электронную почту: 89171215301@mail.ru

Вот далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.

Источник

Варианты интерфейсов энкодеров

Параллельный двоичный интерфейс представляет параллельную шину данных с определенной разрядностью. Например, для чисел от 0…1024 (разрешение 0,35 градуса) достаточно 10 разрядов (210=1024), 10 проводников шины. Для чисел 0…720 к сожалению тоже придется использовать 10 проводников, потому что 29=512. Поэтому энкодеры с таким разрешением (10 бит) после числа 719 сразу переходят на число 0. Для надежного считывания некоторые производители закладывают в такие энкодеры еще один сигнал триггера-защелки, по которому блокируется изменение выходного значения. В остальных случаях рекомендуется использовать цифровые фильтры для борьбы с помехами.

Двоично-десятичным интерфейс (BCD) представляет тоже параллельную шину данных, но с более человекочитаемым форматом чисел. В BCD-представлении используются только 10 возможных комбинаций 4-битового числа вместо 16. Поэтому существуют запрещённые комбинации битов: 1010(1010), 1011(1110), 1100(1210), 1101(1310), 1110(1410) и 1111(1510). Числа в виде десятков от 10 до 90 записываются в следующие 4 бита. Числа в виде сотен от 100 до 900 записываются в следующие 4 бита. И числа в виде тысяч от 1000 до 9000 записываются в следующие 4 бита. Поэтому для комбинации энкодера с 1024 значениями потребуется 4 + 4 + 4 + 1 = 13 бит (проводов).

Интерфейс с кодом Грея также является параллельным, за исключением формата выдачи чисел. Это необходимо для максимально возможного предотвращения от ошибок считывания на критически больших скоростях вращения вала. В коде Грея изменения допускаются только в одном бите при переходе на следующее число. Действует следующее правило кодирования: старший бит остается без изменения, а каждый последующий бит инвертируется, если предыдущий бит исходного двоичного кода равен единице. Ниже представлена разница бинарного кодирования и кодирования Грея

Таблица вариантов кодирования абсолютных энкодеров
Обычное (двоичное) кодирование Кодирование по методу Грея
DEC Binary HEX DEC Binary HEX
0000 0h 0000 0h
1 0001 1h 1 0001 1h
2 0010 2h 3 0011 3h
3 0011 3h 2 0010 2h
4 0100 4h 6 0110 6h
5 0101 5h 7 0111 7h
6 0110 6h 5 0101 5h
7 0111 7h 4 0100 4h
8 1000 8h 12 1100 Ch
9 1001 9h 13 1101 Dh
10 1010 Ah 15 1111 Fh
11 1011 Bh 14 1110 Eh
12 1100 Ch 10 1010 Ah
13 1101 Dh 11 1011 Bh
14 1110 Eh 9 1001 9h
15 1111 Fh 8 1000 8h

Обзор серии магнитных энкодеров EMS22

Серия EMS22 обладает всеми достоинствами магнитных энкодеров: большим сроком жизни, высокой максимальной частотой вращения, отличной разрешающей способностью (таблица 4).

Таблица 4. Серии бесконтактных магнитных энкодеров Bourns

Параметр Наименование
EMS22A EMS22D EMS22P EMS22Q
Технология Магнитная
Тип Абсолютный Направление/шаг ШИМ Инкрементальный
Установочный диаметр, мм 21×16
Класс защиты IP65
Фиксация
Дополнительный выключатель
Материал вала Металл
Ручка Металл
Монтаж В отверстия или с помощью гибкого кабеля
Разрешение, имп/об 1024 состояний 64, 128, 256, 512 1024 состояний 64, 128, 256, 512
Максимальная частота вращения, об/мин 10 000
Уровень выходных сигналов TTL, CMOS
Цикличность до сбоя, миллионов оборотов 100
Диапазон рабочих температур, °С -40…125

Существует четыре модификации серии EMS22, отличающиеся типом выходного сигнала.

EMS22Q. Квадратурные энкодеры. На выходе энкодера формируется пара, сдвинутых на 90° прямоугольных сигналов. Максимальное разрешение составляет 512 импульсов на оборот.

EMS22D – энкодеры с выходными сигналами «направление/шаг». Максимальное разрешение составляет 512 импульсов на оборот.

EMS22A. Абсолютные энкодеры. Формируют 10-битный код положения вала. Код передается по последовательному интерфейсу. Возможно каскадирование энкодеров (рисунок 8).

EMS22P. Абсолютные энкодеры с ШИМ-выходом

На выходе формируют ШИМ-сигнал со скважностью, пропорциональной положению вала. Разрядность ШИМ – 10 бит.

Для всех модификаций напряжение питания составляет 5 В, а уровень выходных сигналов – TTL/CMOS.

Рис. 8. Схема подключения магнитных энкодеров Bourns серии EMS22A

Стоит особо подчеркнуть, что серии EMS22 созданы в первую очередь для построения MMI-систем. Они обладают всеми необходимыми для таких приложений свойствами:

  • высокой максимальной частотой вращения до 10 000 оборотов;
  • большим сроком жизни до 100 миллионов оборотов;
  • отличной разрешающей способностью;
  • расширенным диапазоном рабочих температур -40…125°С;
  • высокой степенью пыле- и влагозащиты IP65.

Благодаря перечисленным качествам, EMS22 могут применяться в широким спектре приложений, таких как управление бесколлекторными двигателями, сервоприводы, промышленные джойстики, робототехника; станки (гильотины, прессы) и так далее.

Программирование энкодера

Современные энкодеры внутри себя имеют микроконтроллер (процессор) все данные энкодера передаются по цифровому последовательному интерфейсу, наиболее распространённый RS485. В процессоре энкодера хранятся данные о двигателе, в котором этот датчик установлен (ток, напряжение, инерция, угол смещения ротора, индуктивности и естественно тип двигателя с серийным номером).

Именно поэтому новые энкодеры просто поставить на оборудование не получится, придется программировать. Программирование энкодера производится с помощью компьютера со специальным программным обеспечением либо с помощью программатора.

Сигналы и выходы инкрементального энкодера

Импульсы на выходе энкодера – один канал

Период Т – величина, обратная частоте, а про частоту мы говорили выше. Уровень “Н” – это напряжение, почти равное напряжению питания (обычно 5, 12, или 24 В). Уровень “L” – около нуля.

Что может рассказать нам такой энкодер? Только о скорости и погонных метрах. Например, его можно применять для определения частоты вращения двигателя, или длины материала после нажатия кнопки “Сброс”. Неплохо, но хочется большего!

Если будет два выхода, импульсы на которых (оптическим способом) сдвинуты на четверть периода, мы сможем узнать направление вращения:

Импульсы каналов А и В с фазовым сдвигом

Такие выходы со сдвигом фаз на четверть периода называются квадратурными каналами. Этот приём широко применяется в радиотехнике и электронике не только для определения направления вращения, но и для определения знака рассогласования частот (больше или меньше опорной частоты?).

Если сдвиг фаз положительный (фаза В отстает), можно условиться о прямом вращении. Если отрицательный (фаза В опережает фазу А на четверть), значит, вращение в обратном направлении. Два этих сигнала с одной частотой и фазой ±90° подаются на триггер, выход которого однозначно указывает о направлении вращения.

Со скоростью, расстоянием и направлением разобрались, а что делать, если нужно узнать угол поворота? Для этого вводится сигнал “Z” (Zero) – опорный импульс, который также называют нуль-меткой или референсной меткой:

Выходы энкодера А, В с нулевой меткой Z

Импульс “Z” имеет длительность Т (бывает и другая длительность – T/2, или 2Т) и проскакивает 1 раз за оборот вала энкодера. Иными словами, длительность нулевой метки может быть в тысячи раз короче периода вращения вала энкодера.

В современных датчиках каждая фаза (канал) обычно имеет ещё один, противофазный выход.

С теорией заканчиваем, плавно переходим к практике.

Подключение поворотного энкодера с Ардуино

Теперь, когда принципы работы различных энкодеров изучены, можно приступить к описанию схемы подключения к Ардуино.

Для этого понадобятся:

  • любое устройство Ардуино, например, Arduino UNO, Arduino Mega, Arduino Leonardo, Arduino 101, Arduino Due;
  • любой энкодер Ардуино.

Обзор поворотного энкодера

Поворотный энкодер — это датчик, используемый для определения углового положения вала, подобный потенциометру.

Пины, и что они означают:

  • CLK: выход A (цифровой);
  • DT: выход B (цифровой);
  • SW: нажатие кнопки (цифровой);
  • + : VCC-напряжение питания;
  • GND: заземление.

Поворотный прибор может быть использован в основном для тех же целей, что и потенциометр. Однако потенциометр обычно имеет точку, за которую вал не может вращаться, в то время как энкодер может вращаться в одном направлении без ограничений. Чтобы сбросить показания положения, нужно нажать на вал вниз.

Данное устройство определяет угловое положение вращающегося вала с помощью серии прямоугольных импульсов. Он по существу имеет равномерно расположенные контактные зоны, соединенные с общим узлом, а также два дополнительных контакта, называемых A и B, которые находятся на 90 градусов вне фазы. Когда вал вращается вручную, контакты A и B синхронизируются с общим контактом и генерируют импульс. Подсчитав количество импульсов любого из этих выходов, можно определить положение вращения.

Чтобы определить направление и проверить, вращается ли штифт по часовой стрелке или против часовой стрелки, нужно сделать следующее:

  • Если вращающийся вал движется по часовой стрелке, то сигнал A опережает B. В одни и те же моменты времени, A и B будут находиться на противоположных частях прямоугольной волновой функции.
  • Если вал движется против часовой стрелки, то сигнал B опережает A.

Подключение

Если говорить в общем, то CLK, DT и SW, должны быть подключены к цифровым выводам на Ардуино, + должен быть подключен к 5V, а GND заземлен.

Пошаговая инструкция подключения проводов энкодера к Ардуино:

  1. CLK: подключите конец провода к пину CLK на поворотном энкодере, затем к любому цифровому выводу на Arduino (оранжевый провод).
  2. DT: подключите конец провода к пину DT, затем к любому цифровому контакту на Arduino (желтый провод).
  3. SW: подключите конец провода к пину SW, далее к любому цифровому контакту на Arduino (голубой провод).
  4. + : подключите провод к пину +, затем к контакту +5V на Arduino (красный провод).
  5. GND: подключите конец провода к пину GND на энкодер с контактом GND на Arduino. (Черный провод).

Как кодировать

Код изменяет высоту тона в зависимости от того, в каком направлении повернут энкодер. Когда он поворачивается против часовой стрелки, шаг уменьшается, а когда он поворачивается по часовой стрелке, шаг увеличивается.

Что понадобится:

  • датчик поворотного энкодера;
  • Ардуино;
  • пьезодатчик;
  • провода.

Вот сам код:

Описание кода

Итак, сначала нужно определить контакты, к которым подключен кодер, и назначить некоторые переменные, необходимые для работы программы. В разделе «Настройки» нужно определить два контакта в качестве входных данных, и запустить последовательную связь для печати результатов на последовательном мониторе. Также нужно прочитать начальное значение вывода A, затем поместить это значение в переменную aLastState.

Далее в разделе цикла снова изменить вывод A, но теперь поместить значение в переменную aState. Таким образом, если повернуть вал и сгенерировать импульс, эти два значения будут отличаться. Сразу после этого, используя второй параметр «if», определить направление вращения. Если выходное состояние B отличается от A, счетчик будет увеличен на единицу, в противном случае он будет уменьшен. В конце, после вывода результатов на мониторе, нужно обновить переменную aLastState с помощью переменной aState.

Это все, что нужно для этого примера. Если загрузить код, запустить монитор и начать вращать вал, значения станут отображаться на мониторе.

Упрощенный пример

Следующий пример кода продемонстрирует, как считывает сигналы Arduino на датчике энкодера. Он просто обновляет счетчик (encoder0Pos) каждый раз, когда энкодер поворачивается на один шаг, а параметры вращения отправляются на порт ПК.

Код:
Следует обратить внимание на то, что приведенный выше код не является высокопроизводительным. Он предоставлен для демонстрационных целей

Принцип работы

Работу энкодера вращения проще всего объяснить на примере оптического энкодера. Представьте себе вал электродвигателя, на котором закреплен диск с прорезями. С одной стороны диска расположен светоизлучающий элемент, луч света проходит через прорези и регистрируется фотоэлементом, расположенным с другой стороны (устройство, состоящее из спаренных светоизлучающего и принимающего элементов, называется фотопрерыватель). При вращении диска луч прерывается, в результате чего на выходе фотоэлемента мы получим меандр — сигнал прямоугольный формы. И частота меандра будет пропорциональна скорости вращения диска. Таким образом можно судить о скорости вращения вала электродвигателя.

Однако работающее по описанному принципу устройство не способно определить направление вращения. Чтобы исправить это добавим в него второй фотопрерыватель и расположим с некоторым смещением относительно первого. В зависимости от направления вращения диска сигнал на выходе первого фотопрерывателя будет меняться раньше или позже чем сигнал на выходе второго. А значит, анализируя как меняются эти два сигнала, мы можем определить направление вращения.

На практике смещения сигналов добиваются не за счет особого расположения фотопрерывателей, а путем добавления второй полосы с прорезями или прозрачными и непрозрачными участками. Участки на двух полосах расположены так чтобы обеспечить сдвиг сигнала по фазе на 90 градусов, поэтому работающие по такому принципу энкодеры называются квадратурными.
На этом же принципе основаны механические энкодеры, только вместо фотопрерывателей в них используются скользящие контакты. Основным недостатком таких энкодеров является дребезг контактов, который может приводить к неправильному подсчету сигналов. Кроме того скользящие контакты подвержены износу. Все это ограничивает область применения механических энкодеров.Магнитные энкодеры строятся на базе магниточувствительных элементов, таких как датчики Холла или магниторезистивные датчики. Они просты в изготовлении, лишены недостатков контактных энкодеров и мало чувствительны к внешним факторам. Но все же проигрывают в точности емкостным, индуктивным и оптическим энкодерам.Емкостные энкодеры имеют в своем составе диск асиметричной формы, который при вращении изменяет емкость между двумя электродами. Это изменение регистрируется и используется для определения углового положения. Емкостные энкодеры так же просты в изготовлении и надежны в эксплуатации, из внешних факторов чувствительны только к изменению влажности.Индуктивные энкодеры работают в магнитном поле и используют явление электромагнитной индукции. Благодаря устойчивости к внешним факторам подходят для использования в неблагоприятной среде, когда другие энкодеры могут оказаться ненадежными.Резистивный энкодер работает по тому же принципу что и обычный потенциометр: электрический сигнал на его выходе пропорционален положению ручки энкодера. Собственно и сами потенциометры могут использоваться для отслеживания углового положения, например, их можно увидеть в сервомашинках:

Энкодер: Примеры применения

Наверное, все читатели знают, что такое энкодер. На всякий случай будет не лишним напомнить, что это электронное устройство, которое позволяет измерять скорость вращения, угловое положение либо направление вращения. Можно сказать иначе – энкодер это датчик, который выдает сигнал в зависимости от угла его поворота.

Теоретически энкодеры бывают двух видов – инкрементальные и абсолютные. Абсолютные нужны там, где в любой момент времени (в том числе, в момент подачи питания) нужно знать точное положение объекта. Но сейчас, с использованием обработки при помощи контроллеров, абсолютные энкодеры практически не используются. Тем более учитывая, что их цена в несколько раз выше, чем у инкрементальных энкодеров.

Как подключаются энкодеры

Подключить энкодер легко – ведь это фактически датчик с транзисторными выходами. В простейшем случае, выход энкодера можно подключить ко входу счетчика, и запрограммировать его на измерение скорости.

Но чаще всего выходные сигналы энкодера обрабатываются в контроллере. А далее путем расчетов можно получить информацию о скорости, направлении вращения, ускорении, положении объекта.

Энкодеры подключают не только к контроллеру. Он также может подключаться к преобразователю частоты, питающему электродвигатель. Таким образом, появляется возможность точного позиционирования, а также поддержания нужной скорости и момента вращения двигателя без использования контроллера.

Монтаж энкодеров

Вал энкодера никогда не будет соосным с вращающимся валом (вспомните, для чего нужен карданный вал). Поэтому используются специальные заводские переходные муфты. Нужно надежно их крепить и периодически проверять качество монтажа.

Существуют энкодеры с полым валом, которые надеваются непосредственно на измеряемый вал и там фиксируются. Там даже нет такого понятия, как несоосность. Их гораздо проще монтировать, и они надежнее в эксплуатации. Чтобы энкодер при этом не прокручивался, используется лишь металлический поводок. На фото ниже показан энкодер с полым валом (обозначен В21.1), надетый на вал редуктора:

Производители энкодеров

Среди российских производителей энкодеров мне известен лишь только Питерский СКБ ИС, который производит энкодеры марки ЛИР. К сожалению, российского промышленного оборудования сейчас почти не производится, и ЛИРы применяются лишь в военном и лабораторном оборудовании.

По этой причине автор имеет дело только с энкодерами зарубежного производства. Производителей энкодеров много – их производят почти все производители полупроводниковых датчиков. Чаще всего встречаюсь с энкодерами Autonics – как и в случае с датчиками, в России представлен большой ассортимент. Другие известные производители энкодеров – немецкий Sick, японский Omron, и несколько китайских брендов.

Использование тех или иных марок энкодеров обусловлены часто не техническими причинами, поскольку их параметры и надежность практически идентичны. Тут скорее политические мотивы – производители комплектующих любыми путями стараются, чтобы их продукция вошла в состав больших производственных линий, чтобы таким образом закрепиться на рынке.

Рассмотрим несколько примеров использования энкодеров в реальном оборудовании.

Измерение скорости полотна

В данном примере, инкрементальный энкодер ELCO используется для измерения скорости бумажного полотна при производстве бумаги. Энкодер закреплен на бумаговедущем валу через муфту, скорость вращения которого однозначно говорит о скорости бумаги.

При помощи системы «энкодер+контроллер» можно вычислить мгновенную скорость, а также погонную длину произведенной продукции:

Источник

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий