Естественный радиационный фон: значение, источники, измерение дозиметром, норма

Каков долговременный эффект воздействия радиации на организм?

Более всего возрастает риск заболевания раком. Обычно клетки организма просто отмирают, дойдя до своего предельного возраста. Однако когда клетки теряют это свойство и продолжают бесконтрольно размножаться, возникает раковое заболевание.

Здоровый организм обычно не дает клеткам дойти до такого состояния. Однако радиоактивное облучение нарушает эти процессы, резко повышая риск развития рака.

Воздействие радиации приводит также к необратимым изменениям – мутациям – генетического фонда, что, в свою очередь, может передаваться будущим поколениям, вызывая пороки и отклонения от нормального развития: уменьшение размеров мозга и головы, неправильное формирование глаз, задержки роста и трудности в обучении.

Смертельная доза

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

Источники ионизирующего излучения

Природные источники ионизирующего излучения:

  • Спонтанный радиоактивный распад радионуклидов.
  • Термоядерные реакции, например, на Солнце.
  • Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.
  • Космические лучи.

Искусственные источники ионизирующего излучения:

  • Искусственные радионуклиды.
  • Ядерные реакторы.
  • Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение

    Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

    ).

Наведённая радиоактивность

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причём тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

Цепочка ядерных превращений

В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.

Естественные источники радиации

Естественные источники радиации – это вид облучения, который производятся самой природой, а именно космосом. Он образует радиационный фон планеты, формируясь из трех постоянных составляющих. В зависимости от того, откуда берется источник излучения, оно делится на внешний и внутренний. Первый поступает в организм из космоса и окружающей среды, второй являет собой радионуклиды, которые находится в теле человека.

Излучение из космоса

Космос – это самый главный естественный источник радиации. Излучение извне поступает на Землю на постоянной основе. Его образуют магнитные частицы, которые попадают под гравитацию планеты, после чего уже не могут выбраться. Наиболее сильное влияние оказывает Солнце. Его радиационный фон состоит из протонов, электронов, а также альфа-частиц.

Космогенные радионуклиды

Также естественным источником ионизирующего излучения является скопление радиоактивных элементов, которые до настоящих времен сохранились на поверхности Земли. Среди них уран, калий, индий, торий и другие. Время полураспада этих веществ составляет миллиарды лет.

Внешнее облучение

Эти вещества поступают в организм человека с продуктами питания, его излучают все постройки на планете, однако данный факт не представляет никакой опасности. Количество, которое получает живой организм, не превышает предельно допустимые нормы.

Внутреннее облучение

Внутренним облучением называется то состояние, когда радиация берется непосредственно из человеческого организма. Радионуклиды, которые попали в тело, сделав этот через пищеварительную и дыхательную систему, начинают облучать другие органы и ткани. Наибольшую часть такого вредоносного воздействия человек получает, находясь в помещении, которое длительное время не проветривалось.

Немного теории: что такое радиация

Я постараюсь рассказать максимально незанудно и упрощённо (да простят меня физики).
По-простому радиация — это некоторое вредное (ионизирующее) излучение, которое, проходя через клетки живых организмов, способно их портить (неправильно изменяя их состав).
Что такое излучение, и почему оно бывает вредным? Обычно под излучением понимают некий поток энергии — электромагнитных волн или элементарных частиц. Волна — это что-то неосязаемое (например, свет или радиосигнал), а частица — это то, что имеет какую-то массу (например, нейтрон — элементарная частица, входящая в состав ядер атомов), но руками их потрогать всё равно не выйдет — слишком уж маленькие, меньше атомов.
Электромагнитные волны условно можно поделить на следующие категории:

  • радиоволны — на их основе работает практически вся наша связь;
  • инфракрасное излучение;
  • видимый свет — это волны, которые мы видим нашими глазами;
  • ультрафиолетовое излучение;
  • рентгеновское излучение — на его основе работает рентген (спасибо, кэп!);
  • жёсткое излучение (или гамма-излучение).

Радиация преимущественно состоит из потока частиц (альфа, бета, нейтронов и других — как правило, поток частиц всегда будет ионизирующим) и/или потока рентгеновских и гамма волн (эти две категории относятся к ионизирующему излучению).
Откуда берётся радиация?
Как правило, основные источники радиации следующие:

  • радиоактивный распад — некоторые вещества не являются стабильными, и их атомы самопроизвольно распадаются с течением времени, побочным эффектом является радиоактивное излучение;
  • ядерные реакции — обычно протекают в реакторах атомных станций или же во время ядерного взрыва, очень редко в природе;
  • космос — космические и солнечные лучи (солнце — природный термоядерный реактор).

Как и в чём измеряется уровень радиации?
Для того, чтобы измерить уровень радиации, необходимо иметь специальный прибор — дозиметр. Уровень радиации измеряется в разных величинах в зависимости от целей измерения, но, поскольку я рассматриваю радиацию с точки зрения её воздействия на человека, то я буду использовать зиверты (Зв) — единицы измерения эффективной дозы радиации, которая условно отражает полученный организмом вред. Очень условно можно считать, что 1 зиверт равен 100 рентгенам.
Какой уровень радиации опасен для здоровья?
При сильном или длительном облучении организма наступает хроническая лучевая болезнь, при очень сильном — острая лучевая болезнь. Как правило, дозы свыше 1 Зв считаются смертельно опасными. В случае неоказания медицинской помощи дозы порядка 3-5 Зв приводят к смерти в течении нескольких месяцев в половине случаев. Дозы свыше 10 Зв абсолютно смертельны и приводят к неминуемой смерти в течение нескольких суток. Доза в 120 Зв или выше убивает человека сразу.

Уровень естественного радиационного фона и естественные источники радиации

Уровень природного радиационного фона, создаваемого находящимися в почве радиоактивными элементами, может отличаться в зависимости от геологических особенностей и высоты местности над уровнем моря.

Источники природного радиационного излучения

Естественная радиация, как и техногенная, измеряется в микрозивертах и микрорентгенах в час. Нормальным считается уровень от 8 до 12 мкР/ч для открытого пространства и до 20 мкР/ч – для помещений. Примерно 40% в показателях дозиметра составляет излучение космической природной (в том числе солнечной) радиации, проникающей сквозь атмосферу в несколько ослабленном виде. Остальную часть излучают элементы, входящие в состав земной коры, это атомы:

  • урана;
  • радия;
  • тория;
  • калия и других.
10 странных фактов о радиации и её влиянии на человека10 странных фактов о радиации и её влиянии на человека

Газ радон

Среди естественных составляющих радиационного фона Земли и его наиболее опасных источников можно выделить газ радон, просачивающийся сквозь недра земной коры. Он обладает слабой летучестью, поскольку он тяжелее воздуха, поэтому его наибольшие скопления обнаруживаются в нижних этажах домов и подвальных помещениях. Считается, что именно этот газ, излучающий в среднем 1,6 мЗв в год в пересчете на 1 человека, является основным источником естественной дозы облучения жителей планеты.

От чего зависит природный уровень радиации

Высота над уровнем моря и геологическое строение почвы являются главными факторами, определяющими показатель естественной радиации той или иной местности. Например, высокогорные территории традиционно считаются зонами повышенного риска.

Средний показатель природного фона по России колеблется в пределах 8-10 мкР/ч. А такие естественные источники, как залежи гранита на Алтае, в Карелии, Италии и Франции повышают общий фон до уровня 20 мкР/ч и выше. Существуют местности и с чрезвычайно повышенным природным фоном – это многолюдные места Китая, Бразилии, Индии.

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.

ДОЗИМЕТР RADEX RD1503+

RADEX RD1503+ − это недорогой дозиметр радиации начального уровня, который с легкостью может использоваться в быту, самая популярная и востребованная модель. Прибор для измерения радиации работает за счет установленного датчика радиоактивности СБМ-20-1. Регистрация гамма- и бета- излучения сопровождается звуковым сигналом, что позволяет быстро найти источник излучения. Чем дольше вы будете проводить замер, тем точнее будут показатели. Также для удобства измерения в дозиметре предусмотрена подсветка дисплея.

ДОЗИМЕТР RADEX ONE

RADEX ONE – это современный индивидуальный дозиметр радиации с компактным корпусом, который максимально удобно держать в руке. Наверное, это самый маленький из всех представленных на рынке дозиметр. Время замера составляет всего 10 секунд. Измерение уровня радиации происходит за счет использования датчика радиации СБМ-20-1. Еще одним преимуществом этого портативного дозиметра является новый режим поиска «CPM» (количество импульсов в минуту), с помощью которого можно быстро находить предметы, которые являются источниками радиоактивного излучения. Благодаря маленькому весу и размеру, этот дозиметр можно носить с собой весь день. Для удобства предусмотрена клипса, что позволяет крепить его на поясе.

ДОЗИМЕТР RADEX RD1212

В бытовом дозиметре радиации RADEX RD1212 помимо всех основных функций, есть еще и возможность передачи данных на персональный компьютер с помощью USB кабеля. Все результаты измерений можно хранить в памяти прибора. Помимо звукового, имеется и вибросигнал. Также предусмотрен фонарик, часы, прибор с плавной установкой уровня порога. Работа дозиметра осуществляется за счет установленного счетчика Гейгера-Мюллера СБМ-20-1. Время измерения составляет 10 секунд. Используя бесплатное приложение RadexWeb, появится возможность делиться своими результатами с другими пользователями, переносить их на интерактивную карту, проводить сверку и анализ измерений. Основное назначение данного дозиметра – оперативное определение уровня радиации разных предметов, продуктов и окружающей среды.

ДОЗИМЕТР RADEX RD1212-BT

Современный бытовой дозиметр радиации RADEX RD1212 BT поможет быстро обнаружить и зафиксировать радиоактивное излучение. Характеризуется прибор компактными размерами, удобной формой, привлекательным дизайном, его легко можно использовать в повседневной жизни и в походах. Помимо подключения к персональному компьютеру посредством USB кабеля, возможно беспроводное Bluetooth подключение к мобильным девайсам (устройствам) (Android). Имеется доступ к онлайн карте с данными о замерах сделанных пользователями дозиметра в разных точках мира. В основе дозиметра также используется датчик радиации СБМ-20-1.

ДОЗИМЕТР RADEX RD1706

В этом дозиметре радиации применяется два датчика радиации СБМ-20-1. Прибор для измерения радиции характеризуется более точными результатами за более короткое время. Для обследования помещений в приборе реализован режим измерения «ФОН». После подсчета показателей гамма- и бета-излучений, все данные выводятся на большой легко читаемый жидкокристаллический дисплей. Еще одно преимущество заключается в том, что диапазон показаний расширен в сто раз и в два раза улучшена производительность. 

ДОЗИМЕТР RADEX RD1008

Бытовой дозиметр радиации RADEX RD1008 оснащен большим многофункциональным графическим дисплеем и простым меню. Дозиметр необычайно удобен в использовании, особенно для измерения уровня радиоактивности в продуктах питания. В дозиметре установлено два датчика радиации БЕТА-2 и БЕТА-2М, они лучше, чем БЕТА-1, т.к. их активная площадь в 2 раза больше. Это позволяет проводить одновременно измерение бета- и гамма-излучений, также дозиметр чувствует альфа-излучение. 

Измерение ионизирующих излучений

Методы измерения

См. также: Дозиметр и Детектор элементарных частиц

Исторически первыми датчиками ионизирующего излучения были химические светочувствительные материалы, используемые в фотографии. Ионизирующие излучения засвечивали фотопластинку, помещённую в светонепроницаемый конверт. Однако от них быстро отказались из-за длительности и затратности процесса, сложности проявки и низкой информативности.

В качестве датчиков ионизирующего излучения в быту и промышленности наибольшее распространение получили дозиметры на базе счётчиков Гейгера. Счётчик Гейгера — газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение. Некоторые приборы снабжаются специальным фильтром, преобразующим бета-излучение в гамма-кванты за счёт тормозного излучения. Счётчики Гейгера плохо селектируют излучения по энергии, для этого используют другую разновидность газоразрядного счётчика, т. н. пропорциональный счётчик.

Существуют полупроводниковые датчики ионизирующего излучения. Принцип их действия аналогичен газоразрядным приборам с тем отличием, что ионизируется объём полупроводника между двумя электродами. В простейшем случае это обратносмещенный полупроводниковый диод. Для максимальной чувствительности такие детекторы имеют значительные размеры.

Широкое применение в науке получили сцинтилляторы. Эти приборы преобразуют энергию излучения в видимый свет за счёт поглощения излучения в специальном веществе. Вспышка света регистрируется фотоэлектронным умножителем. Сцинтилляторы хорошо разделяют излучение по энергиям.

Для исследования потоков элементарных частиц применяют множество других методов, позволяющих полнее исследовать их свойства, например, пузырьковая камера, камера Вильсона.

Единицы измерения

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:

  • линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества.
  • поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества.

В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (русское обозначение: Гр, международное: Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (русское обозначение: рад; международное: rad): доза, соответствующая поглощённой энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр. Не следует путать поглощённую дозу с эквивалентной дозой .

Также широко применяется устаревшее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (русское обозначение: Р; международное: R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)⋅10−9кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (русское обозначение: Кл/кг; международное: C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976⋅10−4 Кл/кг.

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (русское обозначение: Бк; международное: Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (русское обозначение: Ки; международное: Ci). 1 Ки = 3,7⋅1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (русское обозначение: эВ, международное: eV). Как правило радиоактивный источник генерирует частицы с определённым спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

История

О существовании ионизирующего излучения стало известно в результате открытия в 1860-х годах катодных лучей (потоков электронов, ускоряемых в вакуумной трубке высоким напряжением). Следующим открытым видом ионизирующего излучения стали рентгеновские лучи (Вильгельм Рентген, 1895). В 1896 году Анри Беккерель обнаружил ещё один вид ионизирующего излучения — невидимые лучи, испускаемые ураном, проходящие сквозь плотное непрозрачное вещество и засвечивающие фотоэмульсию (в современной терминологии — гамма-излучение). В результате дальнейшего исследования явления радиоактивности было обнаружено (Эрнест Резерфорд, 1899), что в результате радиоактивного распада испускаются альфа-, бета- и гамма-лучи, отличающиеся по ряду свойств, в частности, по электрическому заряду. Впоследствии были обнаружены и другие виды ионизирующей радиации, возникающие при радиоактивном распаде ядер: позитроны, конверсионные и оже-электроны, нейтроны, протоны, осколки деления, кластеры (лёгкие ядра, испускаемые при кластерном распаде). В 1911—1912 годах были открыты космические лучи.

В чем измеряется радиация

Ионизация органических тканей приводит к нарушению механизмов регенерации клеточных структур и возникновению раковых опухолей.

Рисунок 4. Влияние превышения допустимых доз радиации на организм человека

Поэтому очень важно проводить измерение уровня радиации окружающей среды при подозрении на повышенный уровень загрязнения. Для удобства измерения была придумана единица измерения радиации, выражающая количество поглощенной биологическими тканями энергии – Зиверт

Количество накопительного облучения, которое будет безопасным для человека – это 3.5-4 мЗв в течение одного года (Рисунок 4). Помимо Зиверта, существуют и другие единицы измерения.

Каждая из них обладает своими особенностями, необходимыми для как можно более точного установления дозы облучения:

  1. Экспозиционная доза. Используется для измерения концентрации в объемах воздуха позитивных ионов, гамма-лучей и потока рентгеновского излучения. Единица измерения радиации, применяемая для такого типа дозы – это 1 Кулон на 1000 грамм массы. Для сравнения с другой единицей измерения 1 Кл/Г равноценен 3876 Рентгенам.
  2. Поглощенная доза. Этим термином обозначают количество радиационного облучения, поглощенного определенным типом вещества. Бетон, сталь, человеческая плоть – для каждого из этих видов материи применятся свой алгоритм подсчета поглощенной дозы. Применяемой для измерения системной единицей является Грей, не системной – Рад. 1Гр = 100 Рад.
  3. Эквивалентная доза. Данный термин выступает показателем уровня деградации органики под воздействием различных видов энергии радиоактивного воздействия, которая была поглощена. Измерение дозы радиации такого типа в системе СИ осуществляется с помощью Зиверта (Зв). Внесистемным значением выступает Бэр (бэр), и его соотношение к Зиверту = 1:100.
  4. Эффективная доза. По причине различия клеточного состава человеческие органы обладают индивидуальным уровнем чувствительности к радиации. Для удобства определения дозы, способной вывести тот или иной орган из строя добавили этот определитель. Роль единицы измерения вновь играет Зиверт (Зв).
  5. Мощность эквивалентной дозы. Поскольку распределение лучей во времени неравномерно, а сам источник не излучает волны со стабильным промежутком, был введен показатель поглощенной дозы за единицу времени. Он называется мощностью дозы и выражается в любой удобной единице измерения радиоактивного воздействия на один час времени. Мера измерения радиации – Рентген (Р), Зиверт (Зв) или же Грей (Г).

Радиация из космоса

Влияние лучей составляет равную долю общего излучения, которое приходится на население. Сформированы космические лучи из высокоэнергетических потоков, электронов, фотонов и ядер простых частиц. Но Земля обладает защитными механизмами, оберегающими от воздействия радиации, без них жизнь стала бы невозможной.

Магнитный фон отталкивает космические элементы и создает сильную защиту, но не совершенную. Некоторые энергетические частицы просачиваются через преграду и доходят до атмосферных слоев. Лишь малой части удается пройти все преграды и достигнуть поверхностного слоя. В основном при столкновении с атомами происходит взаимодействие с ядрами, они разбиваются и создаются новые частицы, формирующие естественный радиационный фон.

Измерение уровня облучения радиацией

Человек испытывает на себе влияние излучения повсеместно. Радиоактивная доза в определенном количестве присутствует в организме всегда. Когда норма излучения в организме превышена во много раз, может наступить смерть.

Уровень радиации – это максимально допустимая дозировка фонового уровня ионизирующего излучения (измеряется в микрозивертах). Допустимый уровень радиации в закрытом помещении составляет 25 мкР/ч. Единица излучения радиации – микрозиверты в час. Вероятность развития рака резко повышается, если человек облучился дозой радиации свыше 11.42 МкЗв/час. Более половины людей, облучившихся дозой свыше 570.77 МкЗв за один раз, умирает за 3-4 недели. Предельно допустимый уровень излучения от источников естественного происхождения считается нормальным в пределах до 0,57 мкЗв/час. Нормальный радиационный фон, исключая влияние радона, составляет 0,07 мк/час.

Особую опасность излучение представляет для лиц, чья профессиональная деятельность предполагает постоянное столкновение с облучением. Мероприятия по предупреждению облучения среди медперсонала сводятся к установлению допустимого предела излучения.

Предельно допустимая концентрация (ПДК) радиоактивного излучения рассчитывается исходя из данных о виде и периоде распада ионизирующих частиц.

Если человек регулярно соприкасается с радиоактивными элементами, ему необходимо знать о том, как себя защитить. Разработаны и внедрены в практику допустимые уровни загрязнения одежды и средств защиты после дезинфекции. Максимально допустимый уровень загрязнения отражен в таблице ниже.

Объект загрязнения Число частиц в 1 минуту
Альфа-излучение Бета-излучение
До очистки После очистки До очистки После очистки
Руки 75 фон 5000 фон
Белье и полотенца 75 фон 5000 фон
Спецодежда из хлопчатобумажной ткани 500 100 25000 5000
Одежда из пленки 500 200 25000 10000
Обувь 500 200 25000

Существует средняя суточная норма для человека. Она равна 0,0027 млЗв / в сутки.

С этим читают

Щит от радиации

Для защиты от гамма-излучения наиболее эффективны тяжелые элементы, такие как свинец. Чем больше номер элемента в таблице Менделеева, тем сильнее в нем проявляется фотоэффект. Степень защиты зависит и от энергии частиц излучения. Даже свинец ослабляет излучение от цезия-137 (662 кэВ) лишь в два раза на каждые 5 мм своей толщины. В случае кобальта-60 (1173 и 1333 кэВ) для двукратного ослабления потребуется уже более сантиметра свинца. Лишь для мягкого гамма-излучения, такого как излучение кобальта-57 (122 кэВ), серьезной защитой будет и достаточно тонкий слой свинца: 1 мм ослабит его раз в десять. Так что противорадиационные костюмы из фильмов и компьютерных игр в реальности защищают лишь от мягкого гамма-излучения.

Бета-излучение полностью поглощается защитой определенной толщины. Например, бета-излучение цезия-137 с максимальной энергией 514 кэВ (и средней 174 кэВ) полностью поглощается слоем воды толщиной в 2 мм или всего 0,6 мм алюминия. А вот свинец для защиты от бета-излучения использовать не стоит: слишком быстрое торможение бета-электронов приводит к образованию рентгеновского излучения. Чтобы полностью поглотить излучение стронция-90, нужно менее 1,5 мм свинца, но для поглощения образовавшегося при этом рентгеновского излучения требуется еще сантиметр!

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий