Как подключить фотореле для уличного освещения: 11 схем

Фотопрерыватель KY-010

В проектировании устройств с подвижными деталями может оказаться важным подсчитывать число оборотов или факт достижение деталью определенного положения. Подобное можно реализовать с помощью механических концевых выключателей или герконов, но эти элементы имеют механические подвижные части, а значит, будут со временем изнашиваться, залипать и т.п. Для аналогичных целей можно использовать оптопару KY-010 , которая не имеет подвижных частей, а поэтому более надежна.

Модуль фотопрерывателя имеет габариты 24 х 15 мм и массу 1,2 г

Данное устройство представляет собой инфракрасный светодиод с токограничительным резистором. Светодиод освещает фототранзистор, с коллектора которого и снимается полезный сигнал. Модуль имеет три вывода: центральный немаркированный – питание +5В, контакт «-» — общий, контакт «S» — информационный. Потребляемый ток 10 мА.

Модуль надежно срабатывает, будучи подключенным, вместо тактовой кнопки с программой LED_with_button .

Схема фотореле на фоторезисторах. Принцип работы и область применения

Фоторезистор, представляет собой непроволочный полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности . В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Схема устройства фотоэлементов с внутренним фотоэффектом, носящих название фотосопротивлений (ФС) или фоторезисто¬ров, приведена на рис. 16-а. Фотосопротивление представляет собой стеклянную пластинку, покрытую тонким слоем полупроводникового материала (сернистого свинца, сернистого висмута, сернистого кадмия), на котором расположены токопроводящие электроды. Сущность внутреннего фотоэффекта сводится к следующему. Известно, что электропроводимость связана с количеством носите¬лей заряда, который имеет тот или иной материал. В полупровод¬никах количество носителей электрических зарядов может увеличиваться вследствие поглощения энергии извне, в частности под воздействием световой энергии. Увеличение количества носителей электрических зарядов в мате¬риале повышает, его способность проводить электрический ток.

Рис.16 Фотосопротивление В результате этого уменьшается электрическое сопротивление осве-щаемого материала. Отличительная особенность фотосопротивлений от фотоэлемен¬тов с внешним фотоэффектом заключается в том, что при внешнем фотоэффекте электроны покидают пределы освещенного материала, а при внутреннем фотоэффекте они остаются внутри материала, увеличивая тем самым количество носителей электрических зарядов. Изменение проводимости в полупроводниках под воздействием света может быть очень большим. В некоторых материалах при переходе от темноты к интенсивному освещению сопротивление уменьшается в десятки раз и соответственно изменяется величина тока в цепи фотосопротивлений (рис. 16-б). Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два- три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селенокадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов.

Схема включения фоторезисторов:

Рис.17 Схема фотореле на фоторезисторе При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого- либо устройства (схематично показано в виде некоторого сопротивления нагрузки).

Схемы подключения фотореле для уличного освещения

Главная функция фотореле – это подача электропитания с наступлением темноты и его отключение с рассветом. Таким образом, это автоматический выключатель, который действует без вмешательства человека. Роль кнопки отключения играет светочувствительный элемент. Схема подключения фотореле аналогична: на прибор идет подача фазы, прерывается на выходах, а при необходимости цепь замыкается, вследствие чего напряжение подается на лампы или прожекторы.

Для обеспечения работы фотореле тоже требуется электропитание, поэтому на определенные контакты подсоединяют ноль. Так как освещение предполагается в открытой местности, есть необходимость подключения заземления.

Важно правильно соединить проводники, выходящие из корпуса самого регулятора с лампой и сетью

К сожалению, нет универсальной схемы подключения, которая подошла бы ко всем типам фотореле, но определенные моменты характерны для всех операций. Их необходимо учитывать, особенно в случае установки фотореле своими руками.

Практически во всех моделях реле на выходе имеет три разноцветных провода, которые соответствуют таким обозначениям:

  • черный – фаза;
  • зеленый – ноль;
  • красный – фаза, коммутирующая на источник света.

Для обеспечения дополнительных функций можно приобрести фотореле с датчиками движения или таймерами

Пошаговая инструкция подключения фотореле для уличного освещения

Приведенная ниже инструкция подскажет, как поэтапно, быстро и правильно подключить фотореле:

  1. Предварительная установка распределительного щитка. Обычно его монтируют на стене, в нем осуществляют соединение проводников.
  2. Подключение фотореле согласно схеме, которая находится в техдокументации, прилагаемой к самому устройству. Обычно в качестве крепежа используют кронштейн. Его устанавливают в месте, где на реле будут попадать прямые лучи солнца, но при этом изолированы другие источники света.
  3. Корректировка системы с использованием регулятора, то есть выбор параметров реагирования прибора на конкретные условия изменения освещенности.
  4. Установка регулятора производится на внешней части устройства с соответствующими техническими характеристиками: диапазон чувствительности – 5-10 лм; мощность – 1-3 кВт, порог допустимого тока – 10А.

Если прибор монтируют в середине электрощитка со сложной конструкцией, куда не проникают солнечные лучи, то реле и выключатель устанавливают отдельно друг от друга. Соединяют части устройства между собой специальными кабелями.

Подключается фотореле согласно схеме, которая находится в техдокументации, прилагаемой к самому устройству

При установке уличного освещения рекомендуется соблюдать такие правила:

  1. Прибор с внешним фотоэлементом лучше размещать таким образом, чтобы исключить прямое попадание света от устанавливаемого светильника. В ином случае устройство будет работать с ошибками.
  2. Чтобы проверить, правильно подключена схема или нет, необходимо подсоединить пускатель к электросети. Результат будет ясен при срабатывании светильника.

Нюансы в схемах подключения датчика света

Тот факт, что фотореле подбирается с учетом предполагаемой нагрузки, может отразиться на стоимости изделия: в зависимости от мощности возрастает цена. Поэтому с целью экономии средств можно обеспечить подачу питания не через фотодатчик, а посредством магнитного пускателя. Это специальный прибор, предназначенный для частого срабатывания режимов вкл./выкл. Использование пускового механизма позволяет подключить питание, применив фоточувствительный элемент с минимальной нагрузкой.

Таким образом, фактически происходит включение исключительно магнитного пускателя, поэтому во внимание берется только мощность, потребляемая им. А вот уже на выводах магнитного пускателя допускается использование более мощной нагрузки

С целью экономии средств можно обеспечить подачу питания не через фотодатчик, а посредством магнитного пускателя

В том случае, когда, помимо датчика день/ночь, необходимо подсоединить устройства с дополнительными функциями, например, таймер либо датчик движения, то их устанавливают после монтажа фотореле. При этом порядок очередности дополнительных приборов неважен.

Если функция таймера или датчика движения предусмотрена в строении устройства, но она не нужна в конкретном случае, то эти приборы просто исключают из общей схемы, то есть к ним не подводят провода. При этом в случае надобности эти элементы устройства можно будет подключить.

Видео по теме

Introduction: Light Sensor (Photoresistor) With Arduino in Tinkercad

By circuitsTinkercad CircuitsFollow

More by the author:

About: Learn electronics and Arduino with Tinkercad Circuits!

More About circuits »

Tinkercad Projects »

Let’s learn how to read a photoresistor, a light-sensitive type of variable resistor, using Arduino’s Analog Input. It’s also called an LDR (light-dependent resistor).

So far you’ve already learned to control LEDs with Arduino’s analog output, and to read a potentiometer, which is another type of variable resistor, so we’ll build on those skills in this lesson. Remember that Arduino’s analog inputs (pins marked A0-A6) can detect a gradually changing electrical signal, and translates that signal into a number between 0 and 1023.

Explore the sample circuit embedded here in the workplane by clicking Start Simulation and clicking on the photoresistor (brown oval with squiggly line down the middle), then drag the brightness slider to adjust the simulated light input.

In this lesson, you’ll build this simulated circuit yourself along side the sample. To optionally build the physical circuit, gather up your Arduino Uno board, USB cable, solderless breadboard, an LED, resistors (220 ohm and 4.7k ohm), photoresistor, and breadboard wires.

You can follow along virtually using Tinkercad Circuits. You can even view this lesson from within Tinkercad (free login required)! Explore the sample circuit and build your own right next to it. Tinkercad Circuits is a free browser-based program that lets you build and simulate circuits. It’s perfect for learning, teaching, and prototyping.

Литература

  1. http://arduino-kit.ru/catalog/id/modul-fotorezistora
  2. http://www.zi-zi.ru/module/module-ky018
  3. http://robocraft.ru/blog/arduino/68.html
  4. https://arduino-kit.ru/catalog/id/modul-ik-svetodioda
  5. http://www.zi-zi.ru/light/module-ky-005
  6. http://arduino-kit.ru/catalog/id/modul-ik-priemnika
  7. http://www.zi-zi.ru/module/module-ky022
  8. http://cxem.net/arduino/arduino127.php
  9. http://роботехника18.рф/ик-приемник-ардуино-подключение/
  10. http://robotclass.ru/tutorials/arduino-ir-remote-control/
  11. http://www.zi-zi.ru/module/module-ky-010
  12. http://robocraft.ru/blog/arduino/57.html
  13. http://arduino-kit.ru/catalog/id/modul-datchika-pulsa-_ik_
  14. http://www.zi-zi.ru/module/module-ky039
  15. http://forum.amperka.ru/threads/Датчик-пульса-подключение.6490/
  16. https://tkkrlab.nl/wiki/Arduino_KY-039_Detect_the_heartbeat_module
  17. http://arduino-kit.ru/catalog/id/modul-datchika-linii
  18. http://www.zi-zi.ru/module/modul-ky-033
  19. http://amperka.ru/product/analog-line-sensor
  20. http://2shemi.ru/analogovyj-datchik-linii/
  21. http://arduino-kit.ru/catalog/id/modul-dalnomera
  22. http://www.zi-zi.ru/module/modul-ky-032
  23. http://2shemi.ru/infrakrasnyj-datchik-prepyatstviya/
  24. http://arduino-kit.ru/catalog/id/modul-datchika-ognya
  25. http://www.zi-zi.ru/module/modul-ky-026

Файлы и прошивки в общем архиве. Обзор прислал в редакцию сайта «2 Схемы» — Denev.

Коды проекта

Согласно нашим схемам мы приведем примеры различных вариантов для работы фоторезистора с Ардуино с некоторыми разъяснениями.

Вариант 1

В «void setup» мы инициализируем последовательный монитор:

Затем мы читаем аналоговое значение, поступающее от фоторезистора, и определяем его как value («значение»):

И мы записываем значение на последовательном мониторе:

Вариант 2

Чтобы убедиться, что все работает правильно, вы можете создать базовый эскиз, который считывает уровень напряжения и выводит значение в последовательный порт. Закрывая фоторезистор, вы увидите изменение показаний.

Чтобы создать эскиз вольтметра:

  1. Откройте Arduino IDE.
  2. Вставьте код ниже.
  3. Сохраните эскиз. В меню «Файл» выберите «Сохранить как» (англ. – Save as).

Чтобы загрузить эскиз на свой Arduino и посмотреть результат нужно:

  1. Подключитеь Arduino к компьютеру с помощью USB-кабеля.
  2. В IDE на панели инструментов нажмите кнопку «Загрузить» (Upload).
  3. На панели инструментов нажмите кнопку «Последовательный монитор» (Serial Monitor).

Обнаружение изменений

Точные значения, выводимые на последовательном мониторе в скетче выше, будут различаться в зависимости от нескольких факторов:

  • Блок питания от Arduino. В частности, при питании от USB-кабеля обычно 5 В блока питания Arduino немного меньше этого идеала;
  • Минимальное и максимальное значения сопротивления используемого фоторезистора;
  • Точность резистора 10К;
  • Конструкция макета и используемых проводов – они имеют небольшие уровни сопротивления, которые могут повлиять на АЦП;
  • И количество окружающего света в комнате.

Гораздо важнее обнаруживать изменения уровня освещенности, чем иметь дело с реальными цифрами.

Эскиз ниже считывает уровень освещенности в процедуре настройки для использования в качестве базового измерения, а затем определяет, когда фоторезистор закрыт. Когда это происходит, при вызове digitalWrite() загорается встроенный светодиод Arduino на цифровом выводе 13.

Установка порогов

Приведенный выше эскиз устанавливает порог – значение, которое определяет, сколько изменений ожидается, прежде чем что-то произойдет – в коде. В зависимости от вашей среды и приложения может потребоваться отрегулировать этот порог. Чтобы избежать необходимости подключать Arduino обратно к компьютеру и перепрограммировать его, вы можете использовать потенциометр для регулировки величины сопротивления в цепи.

Вы можете подключить потенциометр разными способами, пример которого показан ниже:

Потенциометры – это другой тип переменного резистора – они обычно присоединяются к регулятору, а их сопротивление устанавливается поворотом ручки влево и вправо. На этой схеме триммер используется для изменения напряжения, подаваемого на фоторезистор. Это влияет на его способность обнаруживать свет и изменяет баланс потенциального делителя, так что количество изменений, зарегистрированных эскизом (base – v, в приведенном выше коде), может быть увеличено или уменьшено.

Для более цифрового подхода вы можете подключить потенциометр так же, как фоторезистор, и прочитать его, используя второй аналоговый вход. Затем вы можете использовать это измерение в эскизе, чтобы определить новое значение для переменного порога.

Два примера схем в уроке демонстрируют основные шаги, связанные с обнаружением изменений в уровнях освещенности с помощью фоторезистора и Arduino. Более интересные проекты, такие как системы домашней автоматизации и сигнализации, могут быть построены с использованием дополнительных компонентов, таких как реле, двигатели и устройства беспроводной связи.

Step 4: Build a Physical Arduino Circuit (optional)

To program your physical Arduino Uno, you’ll need to install the free software (or plugin for the web editor), then open it up. Various photocells have different values, so if your physical circuit is not working, you may need to change the resistor that is paired with it. Learn more about voltage dividers in the Instructables Electronics Class lesson on resistors.

Wire up the Arduino Uno circuit by plugging in components and wires to match the connections shown here in Tinkercad Circuits. For a more in-depth walk-through on working with your physical Arduino Uno board, check out the free Instructables Arduino class.

Copy the code from the Tinkercad Circuits code window and paste it into an empty sketch in your Arduino software, or click the download button (downward facing arrow) and open
the resulting file using Arduino.You can also find this example in the Arduino software by navigating to File -> Examples -> 03.Analog -> AnalogInOutSerial.

Plug in your USB cable and select your board and port in the software’s Tools menu.

Upload the code and use your hand to cover the sensor from receiving light, and/or shine a light on your sensor!

Open the serial monitor to observe your sensor values. It’s likely that real world values will not extend all the way to 0 or all the way to 1023, depending on your lighting conditions. Feel free to adjust the 0-1023 range to your observed minimum and observed maximum in order to get the maximum brightness expression range on the LED.

Замечание о кпд нагрева воды

Существует распространенное ошибочное мнение о том, что водяные электронагреватели имеют кпд равный 100%. Это вызвано тем, что в теоретических расчётах потерями энергии нередко пренебрегают из-за их малой величины. Но когда расчёты имеют практическое применение, то нетрудно заметить, что в действительности потери энергии при нагреве воды происходят уже с первых секунд. В зависимости от нагревательного прибора это могут быть следующие виды потерь:

  • на разогрев самого нагревательного элемента (электроплиты),
  • на нагрев стенок ёмкости (чайника, бака),
  • потери на парообразование при кипении,
  • теплопередача и тепловое излучение энергии в окружающую среду (от стенок сосуда и/или нагревательного элемента),
  • испарение с поверхности воды в открытых емкостях (чайниках и кастрюлях без крышки),
  • потери в электрических проводах и контактах (разогрев проводов и штепсельной вилки электроприбора).

В качестве дополнительных мизерных потерь можно выделить:

  • потери на побочных электрохимических процессах (ионные нагреватели),
  • потери на звук (шум, издаваемый пузырьками пара в месте контакта нагревателя или горячей поверхности с водой).

Исходя из направлений потерь нетрудно определить мероприятия по повышению кпд процесса нагрева воды:

  • использование погружного нагревательного элемента,
  • использование закрытой ёмкости,
  • теплоизоляция ёмкости,
  • использование минимально необходимой температуры нагрева.

Управляем освещением при помощи ИК-пульта

В этом примере мы рассмотрим управление с помощью обычного пульта управления от телевизора. Для этого примера потребуется такое оборудование и ПО:

  • Arduino UNO — одна из разновидностей плат ардуино;
  • Блок твердотельного реле FOTEK SSR-25DA;
  • ИК-приемник TSOP1xxx;
  • Любой ИК-Пульт от телевизора;
  • Arduino IDE — программное обеспечение для загрузки микрокода в микроконтроллер Arduino;
  • Лампочка, подключаемая к сети 220 вольт.

В нашем случае мы будем использовать пульт от телевизора Samsung. Ниже показано изображение используемого ИК-Пульта.

Из примера видно, что сделать систему управления светом на базе Arduino совсем несложно. Также стоит отметить, что для этого примера вы можете использовать практически любой ИК-Пульт. Саму же сборку лучше всего поместить в отдельный блок и разместить рядом с лампочкой. Таким образом, при наведении пульта на лампочку, ее можно будет включать и отключать. Еще хотелось бы отметить, что удобней использовать схему с беспроводным Bluetooth адаптером. Такая схема намного функциональней, поскольку передает сигнал через радиоволну, а управление светом производится через смартфон. Но такая схема будет намного дороже рассмотренной из-за стоимости беспроводного Bluetooth адаптера.

Принцип работы

Разберем, как работает фоторезистор?

Когда он неактивен это, по сути, диэлектрик. Чтобы устройство начало проводить ток на него должно быть оказано внешнее воздействие. Тепловое или, как в нашем случае, световое.

Фотоны света, попадая на активный слой, насыщают его электронами, и теперь появляется способность пропускать электрический ток. Возникает прямая зависимость, которую можно отобразить на графике.

Из графика хорошо видно, что чем больше образуется электронов, тем меньшее электрическое сопротивление у полупроводника. На этом свойстве фоторезистора и основан принцип его работы.

Причем эффект образования электронов способен вызвать как видимый спектр излучения так и инфракрасный. В последнем варианте они способны создавать значительно большую энергию.

Восприимчивость фоторезистивного слоя можно поднять за счет легирования его различными добавками. После такой обработки уменьшаются фотосопротивления, но повышается фоточувствительность в  видимых спектрах света.

Этим элементам характерен процесс старения. Он выражается:

  • в снижении омического сопротивления;
  • изменяется фототок;
  • растет чувствительность.

Этот процесс непродолжительный по времени — до нескольких сотен часов и потом параметры становятся стабильны.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Схемы соединения

Вариантов соединений фоторезистора с Ардуино может быть несколько, но мы разберем пару вариантов.

  • Первый вывод -> 5 В
  • Второй вывод -> A0 (сопротивление подключено к заземлению и ко второму выводу фоторезистора).

Вариант 2

Выше показана вторая схема, которую вы можете использовать, чтобы начать любые эксперименты. Фоторезистор и резистор 10 кОм питаются от источника питания 5 В Arduino и образуют делитель потенциала, который защищает Arduino от коротких замыканий и гарантирует, что по крайней мере какое-то сопротивление всегда присутствует на линии.

Провод от этой схемы соединен с аналоговым входом 0 на Arduino. Резисторы понижают напряжение, проходящее через них, и поэтому для считывания изменений в освещении этой цепи вы можете использовать аналого-цифровые преобразователи (АЦП) Arduino для измерения уровня напряжения на входе. АЦП преобразуют аналоговое значение в целое число в диапазоне от 0 до 1023.

Когда фоторезистор подвергается воздействию света, его сопротивление уменьшается, и поэтому показания напряжения будут выше. Когда свет блокируется, сопротивление фоторезистора увеличивается, и поэтому показания напряжения будут ниже.

Фоторезистор представляет собой простой пассивный компонент с двумя клеммами и не имеет полярности – не имеет значения, в каком направлении вы поместите его в цепь.

Как подключить датчик освещенности к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • модуль датчика освещенности;
  • один светодиод и резистор 220 Ом;
  • беспаечная макетная плата;
  • провода «папа-папа», «папа-мама».

Датчик освещенности ky: схема подключения к Ардуино

На картинке представлена схема подключения датчика света к Arduino Uno с использованием аналогового сигнала. На модуль подается питание 5 Вольт, а в зависимости от освещенности в помещении на выходе модуля (S) меняется напряжение от 0 до 5 Вольт. При подаче этого сигнала на аналоговый вход микроконтроллера, Arduino преобразует сигнал при помощи АЦП в диапазон значений от 0 до 1023.

Счетч для аналогового датчика освещенности

void setup() {
  pinMode(A1, INPUT);
  analogWrite(A1, LOW);
  Serial.begin(9600);   // подключаем монитор порта
}

void loop() {
  // считываем данные с датчика и выводим на монитор порта
  int light = analogRead(A1);
  Serial.print("Light = ");
  Serial.println(light);

  // рассчитываем напряжение и выводим на монитор порта
  float u = light * 0.48 / 100;
  Serial.print("U = ");
  Serial.println(u);

  // ставим паузу и делаем перенос строки
  delay(500);
  Serial.println("");
}
  1. в приведенном примере мы выводим на монитор порта данные с датчика освещенности, преобразованные с помощью АЦП Ардуино;
  2. чтобы узнать приблизительно напряжение, поступающее на вход Arduino, следует умножить получаемое значение на 0,0048 или U = light * (5 / 1023). Так как тип данных может хранить значения только с двумя знаками после запятой, то мы используем в скетче другую формулу для своих расчетов.

Схема подключения датчика освещенности к Ардуино

Следующая программа использует цифровой сигнал, идущий от датчика освещенности ky. На модуле имеется подстроечный резистор для настройки чувствительности. То есть вы можете отрегулировать, какой уровень освещенности необходим, чтобы модуль стал отправлять сигнал истина (логическая единица) на микроконтроллер Arduino. Подключите светодиод к пин 13 и загрузите следующий скетч.

Счетч для цифрового датчика освещенности

void setup() {
  pinMode(13, OUTPUT);
  pinMode(A1, INPUT);
}

void loop() {
   // считываем данные с датчика и выводим на монитор порта
   if (digitalRead(A1) == HIGH) {
      digitalWrite (13, LOW);
  }
   if (digitalRead(A1) == LOW) {
      digitalWrite (13, HIGH);
  }
}

Простое фотореле.

Окончание работ

Последний штрих – это сама установка розеток в гипсокартон, ради чего и была проделана вся эта подготовительная работа. Меряем и обрезаем провода из подрозетника до нужной длины. Для удобства оставляем длину 5 – 7 см. Этого размера достаточно для нормального подсоединения проводов.

Розетки, купленные специально под гипсокартон, бывают разных моделей, но предпочтительнее не с пластиковым, а с металлическим ободком. В случае нештатной ситуации больше вероятности замыкания провода через металл на «землю», что вызовет срабатывание автомата защиты.

Желательно, чтобы розетки, которые устанавливаем в гипсокартоне, были заземлены. Для этой цели существуют трехжильные кабеля, заземляющий провод – желтый с зеленым, или просто желтый. Его подключаем на клемму заземления. Остальные две жилы – фаза и ноль.

Совет: концы проводов хорошо залудите паяльником, либо наденьте специальные наконечники. Зажимайте болты максимально крепко, но не сорвите резьбу.

Когда все готово вставляем сердцевину в коробку, зажимаем винтами, после чего надеваем пластиковую крышечку и тоже закручиваем болтик. Монтаж окончен.

Как показывает практика, установить розетки в специальные коробки под гипсокартон несложно. Дольше описывать и рассказывать. Главное – грамотно установить подрозетники. соблюдать правила техники безопасности, быть внимательным и аккуратным. Тогда все обязательно получится!

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий