Глава iv. дыхание

Количество кислорода в крови

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Кислородная емкость крови зависит от содержания в ней гемоглобина.

В артериальной крови содержание кислорода лишь немного (на 3-4%) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180-200 мл кислорода. Даже в тех случаях, когда в экспериментальных условиях человек дышит чистым кислородом, его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3-4%).

Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород.

Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода. Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100.

Например:
(200-120): 200 х 100 = 40%.

В покое коэффициент утилизации кислорода организмом колеблется от 30 до 40%. При интенсивной мышечной работе он повышается до 50-60%.

Роль легких

Основная функция легких – это обеспечение обмена газами между воздухом и кровью. Этот процесс возможен из-за огромной площади органа: у взрослого человека она составляет 90 м 2 и почти такой же площадью сосудов МКК, где происходит насыщение венозной крови кислородом и отдача углекислого газа.

Во время выдоха из организма выводится более двухсот различных веществ. Это не только углекислый газ, но и ацетон, метан, эфиры и спирты, пары воды и т. д.

Помимо кондиционирования, функция легких заключается в защите организма от инфекции. При вдохе, все патогенные вещества оседают на стенках дыхательной системы, в том числе альвеол. В них содержатся макрофаги, захватывающие микробов и уничтожающие их.

Макрофаги вырабатывают хемотаксические вещества, которые привлекают гранулоциты: они выходят из капилляр и принимают прямое участие в фагоцитозе. После поглощения микроорганизмов, макрофаги могут переходить в лимфатическую систему, где может происходить воспаление. Патологические агенты заставляют вырабатывать лейкоцитарные антитела.

Что такое газообмен?

Для существования живым организмам необходим воздух. Он представляет собой смесь из множества газов, основную долю которых составляют кислород и азот. Оба эти газа являются важнейшими компонентами для обеспечения нормальной жизнедеятельности организмов.

В ходе эволюции разные виды выработали свои приспособления для их получения, у одних развились легкие, у других — жабры, а третьи используют только кожные покровы. При помощи этих органов осуществляется газообмен.

Что такое газообмен? Это процесс взаимодействия внешней среды и живых клеток, в ходе которого происходит обмен кислорода и углекислого газа. Во время дыхания вместе с воздухом в организм поступает кислород. Насыщая все клетки и ткани, он участвует в окислительной реакции, превращаясь в углекислый газ, который выводится из организма вместе с другими продуктами метаболизма.

Носовая полость

Воздухоносные пути начинаются с носовой полости, которая через ноздри соединяется с окружающей средой. От ноздрей воздух проходит по носовым ходам, выстланным слизистым, реснитчатым и чувствительным эпителием. Наружный нос состоит из костных и хрящевых образований и имеет форму неправильной пирамиды, которая изменяется в зависимости от особенностей строения человека. В состав костного скелета наружного носа входят носовые косточки и носовая часть лобной кости. Хрящевой скелет является продолжением костного скелета и состоит из гиалиновых хрящей различной формы. Полость носа имеет нижнюю, верхнюю и две боковые стенки. Нижняя стенка образована твёрдым нёбом, верхняя — решётчатой пластинкой решётчатой кости, боковая — верхней челюстью, слёзной костью, глазничной пластинкой решётчатой кости, нёбной костью и клиновидной костью. Носовой перегородкой полость носа разделена на правую и левую части. Перегородка носа образована сошником, перпендикулярной пластинкой решётчатой кости и спереди дополняется четырёхугольным хрящом носовой перегородки.

На боковых стенках полости носа располагаются носовые раковины — по три с каждой стороны, что увеличивает внутреннюю поверхность носа, с которой соприкасается вдыхаемый воздух.

Носовая полость образована двумя узкими и извилистыми носовыми ходами. Здесь воздух согревается, увлажняется и освобождается от частичек пыли и микробов. Оболочка, выстилающая носовые ходы, состоит из клеток, которые выделяют слизь, и клеток реснитчатого эпителия. Движением ресничек слизь вместе с пылью и микробами направляется из носовых ходов наружу.

Внутренняя поверхность носовых ходов богато снабжена кровеносными сосудами. Вдыхаемый воздух, попадает в полость носа, обогревается, увлажняется, очищается от пыли и частично обезвреживается. Из носовой полости он попадает в носоглотку. Затем воздух из носовой полости попадает в глотку, а из неё — в гортань.

Дышают ли растения ?

Да, как животные и люди, растения тоже дышат.

Растения действительно нуждаются в кислороде, чтобы дышать, в ответ на это выделяется углекислый газ. В отличие от людей и животных, растения не обладают какими-либо специализированными структурами для обмена газов, однако они обладают устьицами (обнаруженными в листьях) и чечевичками (обнаруженными в стеблях), активно участвующими в газообмене. Листья, стебли и корни растений дышат медленнее, чем люди и животные.

Дыхание отличается от дыхания. И животные, и люди дышат, что является одной из ступеней дыхания. Растения участвуют в дыхании на протяжении всей своей жизни, так как растительной клетке нужна энергия для выживания, однако растения дышат иначе, благодаря процессу, известному как клеточное дыхание.

В процессе клеточного дыхания растения производят молекулы глюкозы посредством фотосинтеза, улавливая энергию солнечного света и превращая ее в глюкозу. Несколько живых экспериментов демонстрируют дыхание растений. Все растения дышат, чтобы обеспечить энергией свои клетки, чтобы они были активными или живыми.

Дыхание растений

Давайте посмотрим на дыхательный процесс у растений.

Значение кислорода

В каких кровеносных сосудах происходит газообмен и как в целом осуществляется данный процесс, ясно. Теперь стоит поговорить и о значении кислорода для организма человека.

Это – элемент-органоген. В организме его содержится до 65%. А это примерно 40 килограмм, если брать в расчет среднестатистического человека.

Ключевая функция кислорода – участие во всех окислительно-восстановительных реакциях, проходящих в организме. Именно благодаря ему организм может утилизировать белки, жиры и углеводы с извлечением энергии для своих нужд.

Согласно исследованиям, в минуту потребляется от 1,8 до 2,4 грамма кислорода.

Нижние дыхательные пути

Обмен между внутренним и внешним миром осуществляет непосредственно в легких. Они относятся к нижним дыхательным путям вместе с рядом органов, таких как:

  1. Трахея.
  2. Бронхи.
  3. Легкие.

Первым отделом нижних дыхательных путей является трахея. Она продолжается из гортани, поэтому имеет с ней схожее строение, также представляя собой трубку с хрящами в стенке. Хрящи в трахее гораздо более крупные и созданы природой для того, чтобы поддерживать форму органа, не давая ему спадаться и обеспечивая непосредственно дыхание

Это свойство стенки трахеи чрезвычайно важно и для ряда патологических ситуаций, когда человек теряет способность самостоятельно дышать через нос

Бронхи – парный орган, берущий свое начало от трахеи и разделяющийся надвое на уровне четвертого грудного позвонка. Сначала они делятся на правый и левый крупные главные бронхи, которые еще сохраняют хрящевую структуру вышележащих отделов системы, обеспечивающей дыхание человека. Далее главные бронхи ветвятся на более мелкие. Каждой степени ветвления присвоен свой порядок. В организме человека максимально выделяют 12 порядков. На этом уровне бронхи представляют собой тоненькие нити и заканчиваются альвеолами.

Альвеола – это наименьшая единица дыхательной системы, которая имеет форму пузырька и выполняет функцию газообмена. Именно совокупность миллионов альвеол образует главный орган дыхания – легкие. Они представляют собой крупный орган, имеющий сегментарное строение и располагающийся в грудной клетке. В правом легком сегментов выделяют больше, чем в левом, так как слева у человека располагается сердце.

Сверху каждое легкое укрыто своеобразным плащом – плеврой, которая состоит из двух листков с полостью между ними.

Роль легких

Основная функция легких – это обеспечение обмена газами между воздухом и кровью. Этот процесс возможен из-за огромной площади органа: у взрослого человека она составляет 90 м 2 и почти такой же площадью сосудов МКК, где происходит насыщение венозной крови кислородом и отдача углекислого газа.

Во время выдоха из организма выводится более двухсот различных веществ. Это не только углекислый газ, но и ацетон, метан, эфиры и спирты, пары воды и т. д.

Помимо кондиционирования, функция легких заключается в защите организма от инфекции. При вдохе, все патогенные вещества оседают на стенках дыхательной системы, в том числе альвеол. В них содержатся макрофаги, захватывающие микробов и уничтожающие их.

Макрофаги вырабатывают хемотаксические вещества, которые привлекают гранулоциты: они выходят из капилляр и принимают прямое участие в фагоцитозе. После поглощения микроорганизмов, макрофаги могут переходить в лимфатическую систему, где может происходить воспаление. Патологические агенты заставляют вырабатывать лейкоцитарные антитела.

Газообмен в легких

Каждый день мы вдыхаем больше 12 килограмм воздуха. В этом нам помогают легкие. Они являются самым объемным органом, способным вместить до 3 литров воздуха за один полный глубокий вдох. Газообмен в легких происходит при помощи альвеол – многочисленных пузырьков, которые переплетены с кровеносными сосудами.

Воздух попадает в них через верхние дыхательные пути, проходя трахею и бронхи. Соединенные с альвеолами капилляры забирают воздух и разносят его по кровеносной системе. В то же время они отдают альвеолам углекислый газ, который покидает организм вместе с выдохом.

Процесс обмена между альвеолами и сосудами называется двусторонней диффузией. Он происходит всего за несколько секунд и осуществляется благодаря разнице в давлении. У насыщенного кислородом атмосферного воздуха оно больше, поэтому он устремляется к капиллярам. Углекислый газ имеет меньшее давление, отчего и выталкивается в альвеолы.

Транспорт кислорода

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин — это комплекс гемоглобина и молекулярного кислорода.

Гемоглобин содержится в красных кровяных тельцах — эритроцитах. Эритроциты под микроскопом похожи на слегка приплюснутый бублик. Такая необычная форма позволяет эритроцитам взаимодействовать с окружающей кровью большей площадью, чем шарообразным клеткам (из тел, имеющих равный объем, шар имеет минимальную площадь). А кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр и добираясь в самые отдаленные уголки организма.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика — время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол с соответствующими вентиляцией и кровоснабжением практически весь гемоглобин притекающей крови превращается в оксигемоглобин. А вот сама скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов.

Отсюда следует второй практический вывод: чтобы газообмен шел успешно, воздух должен «получать паузы», за время которых успевает выровняться концентрация газов в альвеолярном воздухе и притекающей крови, то есть обязательно должна присутствовать пауза между вдохом и выдохом.

Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) зависит от содержания растворенного кислорода в жидкой части плазмы крови. Причем механизмы усвоения растворенного кислорода весьма эффективны.

Например, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. И, несмотря на снижение атмосферного давления, ткани продолжают успешно снабжаться кислородом.

В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала (например, в жировой ткани), большая часть оксигемоглобина не «отдает» молекулярный кислород — уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.

Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду) снижается при увеличении концентрации углекислого газа (эффект Бора) и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.

Отсюда становится легко понятным, как взаимосвязаны и сбалансированы относительно друг друга природные процессы. Изменения способности оксигемоглобина удерживать кислород имеет громадное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет и облегчает «отдачу» гемоглобином кислорода и облегчает течение обменных процессов.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он уже не отдаст ее в кровь.

Особенности дыхания у детей

Дыхание детей отличается от дыхания взрослых. Целевые органы у ребенка меньше, из-за чего они склонны к заболеваниям.

Физиологические особенности системы дыхания детей:

  • Узкие носовые ходы и затрудненное дыхание через рот из-за относительно большого языка. В 10-14 лет часто встречаются заболевания носоглотки.
  • Гортань длиннее и уже, чем у взрослого, характеризуется рыхлостью и образованием новых кровеносных сосудов. Это вызывает отек подсвязочного пространства (нижний отдел гортани).
  • Узкие долевые бронхи.
  • Слабая развитость эластичной ткани легких, что является причиной быстрого возникновения эмфиземы.
  • Склонность к непроходимости дыхательного тракта (обструкция дыхательных путей).
  • Склонность к ателектазу (спадению легких из-за дефицита/отсутствия воздуха в альвеолах).
  • Склонность к воспалительным процессам.
  • Мягкий каркас грудной клетки, слабая мускулатура.
  • Преобладание диафрагмального дыхания.
  • Дыхательная аритмия.

Общая схема дыхания

Особенность строения дыхательной системы позволяет воздушным массам легко проходить по дыхательным путям и попадать в легкие, где происходят обменные процессы.

Воздух попадает в дыхательную систему через носовой ход, затем проходит по ротоглотке в трахею, откуда масса доходит до бронхов. После прохождения через бронхиальное дерево воздух попадает в легкие, где и происходит обмен между разными типами воздуха. Во время этого процесса кислород поглощается клетками крови, превращая венозную кровь в артериальную и доставляя ее к сердцу, а оттуда она разносится по всему организму.

Трахея

Гортань переходит в трахею (дыхательное горло), которая имеет форму трубки длиной около 12см, в стенках которого есть хрящевые полукольца, не позволяющие ей спадать. Задняя стенка её образована соединительнотканной перепонкой. Полость трахеи, как и полость других воздухоносных путей выстлана мерцательным эпителием, препятствующим проникновению в лёгкие пыли и других инородных тел. Трахея занимает серединное положение, сзади она прилежит к пищеводу, а по бокам от неё располагаются сосудисто-нервыне пучки.

Спереди шейный отдел трахеи прикрывают мышцы, а вверху она охватывается ещё щитовидной железой. Грудной отдел трахеи прикрыт спереди рукояткой грудины, остатками вилочковой железы и сосудами. Изнутри трахея покрыта слизистой оболочкой, содержащей большое количество лимфоидной ткани и слизистых желёз. При дыхании мелкие частички пыли прилипают к увлажнённой слизистой оболочке трахеи, а реснички мерцательного эпителия продвигают их обратно к выходу из дыхательных путей.

Нижний конец трахеи делится на два бронха, которые затем многократно ветвятся, входят в правое и левое лёгкие, образуя в лёгких «бронхиальное дерево».

Морфологическая и функциональная характеристика отдельных звеньев системы

Дыхательные пути условно делят на верхние, к к-рым относится наружный нос, носовая полость с околоносовыми пазухами, глотка, и нижние, включающие гортань, трахею и бронхи. 54% общего сопротивления воздухообмену Д. с. относится к верхним дыхательным путям, в т. ч. 47% — к сопротивлению полости носа. При дыхании через рот наблюдается меньшее сопротивление току воздуха, в результате чего подавляется развитие положительных и отрицательных давлений в грудной и брюшной полостях, важных для оптимальной функции сердечно-легочной системы. Возрастные изменения носовой полости приводят к изменению тока воздуха в ней. в результате чего образуются завихрения, что вместе со снижением тонуса дыхательных мышц у пожилых людей иногда вынуждает их переходить к ротовому дыханию. Это увеличивает нагрузку на сердце.

Особенностью строения нижних дыхательных путей является наличие в их стенках хрящей, благодаря чему стенки не спадаются и не закрывают просвет дыхательной трубки при изменении положения тела или смещении органов. Стенки бронхов включают также гладкомышечные клетки, обеспечивающие изменение их просвета, благодаря чему происходит регуляция притока воздуха в альвеолы легких. Слизистая оболочка дыхательных путей выстлана мерцательным эпителием. Движение ресничек эпителия способствует удалению из дыхательных путей пылевых частиц, микроорганизмов и слизи. Железы, расположенные в слизистой оболочке, особенно в носовой полости, выделяют слизь, которая увлажняет вдыхаемый воздух, а сильно развитые венозные сплетения в подслизистом слое носовой полости обеспечивают его согревание.

Пути, проводящие воздух, заканчиваются в легких (см.) терминальными бронхиолами, переходящими в дыхательные бронхиолы ацинусов. Ацинусы образуют дыхательную паренхиму легких, в которой происходит газообмен между кровью и альвеолярным воздухом (см. Газообмен) .

Газообмен в органах Д. с. осуществляется благодаря вдоху и выдоху посредством дыхательных мышц, сокращение и расслабление которых приводит к изменению емкости грудной полости (см. Дыхательные мышцы). Увеличение объема плевральных полостей и понижение в них давления влечет за собой расправление легочной ткани и поступление в легкие воздуха. Помимо осуществления легочного, или внешнего, дыхания (см.), с Д. с. связаны также функции обоняния и голосообразования. В слизистой оболочке, покрывающей верхнюю носовую раковину и прилежащую часть перегородки носа, располагается периферическая часть органа обоняния.

Глотка (см.) — трубка, расширенная в верхней части и несколько суженная в переднезаднем направлении, расположенная между полостью носа и рта вверху и пищеводом внизу, является также частью дыхательных путей и соединяет полость носа с гортанью. Гортань (см.) — верхний отдел воздухопроводящих путей, следующий за глоткой и являющийся одновременно местом голосообразования. В гортани находится самое узкое место дыхательных путей, ограниченное голосовыми складками. Остов ее состоит из хрящей, внутренняя поверхность выстлана слизистой оболочкой. Трахея (см.)— цилиндрическая трубка, состоящая из 15—20 хрящевых полуколец, соединенных плотной соединительной тканью. Изнутри выстлана слизистой оболочкой, покрытой мерцательным эпителием. На уровне Th4-5 трахея разделяется на два главных бронха (см. Бронхи), строение стенок которых сходно со строением трахеи. От главных бронхов ответвляются вторичные (долевые) бронхи, от последних — третичные (сегментарные), которые в свою очередь делятся на субсегментарные бронхи и далее более мелкие, в совокупности образующие бронхиальное дерево. Разветвления бронхиол заканчиваются альвеолярной легочной тканью.

Патология органов дыхательной системы — см. соответствующие статьи, посвященные отдельным органам,— Бронхи, Глотка, Гортань, Легкие и др., а также статьи по отдельным заболеваниям и патологическим состояниям — Бронхит, Дыхательная недостаточность, Пневмония и др.

Библиография: Маршак М. Е. Регуляция дыхания у человека, М., 1961, библиогр.; Основы морфологии и физиологии организма детей и подростков, под ред. А. А. Маркосяна, с. 243, М., 1969; Поликар А. и Гали П. Бронхолегочный аппарат, пер. с франц., Новосибирск, 1972; Старение и физиологические системы организма, под ред. Д. Ф. Чеботарева, с. 253, Киев, 1969, библиогр.; Холдэн Д. С. и Пристли Д. Г. Дыхание, пер. с англ., М. — Л., 1937, библиогр.

Обмен газов у растений

В отличие от животных, у растений газообмен в тканях включает потребление и кислорода, и углекислого газа. Кислород они потребляют в процессе дыхания. Растения не обладают для этого специальными органами, поэтому воздух поступает в них через все части тела.

Как правило, листья имеют наибольшую площадь, и основное количество воздуха приходится именно на них. Кислород поступает в них через небольшие отверстия между клетками, называемые устьицами, перерабатывается и выводится уже в виде углекислого газа, как и у животных.

Отличительной особенностью растений является способность к фотосинтезу. Так, они могут преобразовывать неорганические компоненты в органические при помощи света и ферментов. Во время фотосинтеза поглощается углекислый газ и производится кислород, поэтому растения являются настоящими «фабриками» по обогащению воздуха.

Интенсивность процесса

Рассказывая о том, в каких сосудах происходит газообмен в легких, стоит отметить интересный нюанс. Дело в том, что этот процесс (а, соответственно, и последующий расход энергии) становится менее интенсивным, если температура тела понижается. Сначала это было выявлено у холоднокровных созданий, а затем удалось доказать аналогичную зависимость и у теплокровных млекопитающих. Человек, естественно, к ним тоже относится.

То же самое наблюдается в условиях искусственной или естественной гипотермии. А вот при повышении температуры тела, когда человек заболевает или перегревается, газообмен наоборот увеличивается.

Здоровое дыхание

Здоровое дыхание определяется по количеству и ритмичности вдохов и выдохов. Норма дыхания – около 18 дыхательных движений в минуту и их одинаковая частота. Природой устроено так, что дыхание – легкое, незаметное и безболезненное.

Если кислорода не хватает, появляется тяжелое дыхание. Такое затрудненное дыхание называют одышкой. Оно возникает при физических нагрузках, нервном переутомлении, хронической усталости, а также сопровождает некоторые заболевания.

Терапевты при осмотре определяют состояние респираторной системы с помощью везикулярного дыхания, то есть по шумам в легких при вдохе. По характеру шума становится ясно, нормально работают органы дыхания или с отклонениями.

Правильное дыхание – полное, при котором в организм поступает достаточное количество кислорода, и сгорают токсины. Оно необходимо каждой клеточке. У глубокого дыхания есть любопытные бонусы:

  • Выработка тепла от процесса сгорания токсинов в легких. Легкие становятся «печкой», обогревающей весь организм и защищающей от простуд.
  • Массаж дыханием, осуществляемый в отношении кишечника и соседних внутренних органов за счет расширения диафрагмальных движений. Это улучшает кровоток к органам, способствует их очищению и восстановлению.

Обмен газов в тканях (тканевое дыхание)

Обмен газов в тканях осуществляется в капиллярах по тому же принципу, что и в лёгких. Кислород из тканевых капилляров, где его концентрация высока, переходит в тканевую жидкость с более низкой концентрацией кислорода. Из тканевой жидкости он проникает в клетки и сразу же вступает в реакции окисления, поэтому в клетках практически нет свободного кислорода.

Диоксид углерода по тем же законам поступает из клеток, через тканевую жидкость, в капилляры. Выделяющийся углекислый газ способствует диссоциации оксигемоглобина и сам вступает в соединение с гемоглобином, образуя карбоксигемоглобин, транспортируется в лёгкие и выделяется в атмосферу. В оттекающей от органов венозной крови углекислый газ находится как в связанном, так и в растворённом состоянии в виде угольной кислоты, которая в капиллярах лёгких легко распадается на воду и углекислый газ. Угольная кислота может также вступать в соединения с солями плазмы, образуя бикарбонаты.

В лёгких, куда поступает венозная кровь, кислород снова насыщает кровь, а углекислый газ из зоны высокой концентрации (легочных капилляров) переходит в зону низкой концентрации (альвеол). Для нормального газообмена воздух в лёгких постоянно сменяться, что достигается ритмическими атаками вдоха и выдоха, за счёт движений межрёберных мышц и диафрагмы.

Развитие дыхания

Научиться дышать правильно не получится в одно мгновенье. Необходимо тренировать органы дыхания с помощью дыхательной гимнастики. Она способствует нормализации газового состава крови и улучшению усвоения кислорода.

Основные направления дыхательной гимнастики:

  • Отработка глубокого, брюшного дыхания. Результат: сильная и гибкая диафрагма без напряжения.
  • Работа над увеличением объема легких. Результат: сильные легкие, очищенные от застоев в виде слизи, тяжелых металлов, смол и бактерий, осевших в нижних отделах по причине поверхностного дыхания.
  • Обратное дыхание. На вдохе грудь расширяется, а живот втягивается, на выдохе живот выпячивается.
  • Дыхание носом. Хорошее дыхание – через нос, а не через рот. При дыхании через рот воздух сразу попадает в легкие, не очищаясь от вредных микроорганизмов.

Техник дыхания множество. Например, есть такие виды тренировки респираторной системы как вечернее (успокаивающее) и утреннее (мобилизующее) дыхание. Первое заключается в постепенном удлинении выдоха до длительности, равной двум вдохам, затем в удлинении вдоха до этого же уровня и в последующем поэтапном возвращении к естественному темпу. Утреннее дыхание – зеркально противоположное, начинается с удлинения вдохов.

Успокаивающее и возбуждающее действие техник вечернего и утреннего дыхания основано на интересном механизме: при вдохе возбуждаются окончания симпатического нерва, стимулирующего внутренние органы, а при выдохе – блуждающего нерва, тормозящего их деятельность.

Если человек не посылает в легкие нужного количества воздуха, он отравляет весь свой организм. А если при этом он еще и дышит ртом, не фильтруя носом токсины внешней среды, вредные процессы форсируются.

Аллергия, гайморит, бронхит, хроническая пневмония, аденоиды, варикоз, геморрой, гипертиреоз, неконтролируемый набор веса – все это и многое другое может не возникнуть, если человек научится правильно дышать.

Более того, правильное дыхание способно избавить от болей при множестве заболеваний. Специалисты насчитали порядка 150 таких проблем, решить которые помогает хорошее дыхание! Бороться с ними научит авторский курс «Воздух» Мари Дебошир, направленный на освоение правильного дыхания носом marideboshir.ru.

Дыхательная система человека

Схема дыхательной системы человека

Дыхательная система человека состоит из носа, глотки, гортани, трахеи и лёгких с бронхами. Газообмен осуществляется в альвеолах лёгких, и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа. Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту, однако частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту). Взрослый человек делает 15—17 вдохов-выдохов в минуту, а новорождённый ребёнок делает 1 вдох в секунду.

По способу расширения грудной клетки различают два типа дыхания:

  • грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер), чаще наблюдается у женщин;
  • брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы), чаще наблюдается у мужчин.

Строение

Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани. Система верхних дыхательных путей состоит из полости носа (лат. cavum nasi), носоглотки (лат. pars nasalis pharyngis) и ротоглотки (лат. pars oralis pharyngis), а также частично ротовой полости, так как она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани (лат. larynx, иногда её относят к верхним дыхательным путям), трахеи (др.-греч. τραχεῖα (ἀρτηρία)), бронхов (лат. bronchi).

В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2 000 мл воздуха. После максимального выдоха в лёгких остаётся воздух в количестве около 1 500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3 000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких. Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное).

Дыхательные пути обеспечивают связь окружающей среды с главными органами дыхательной системы — лёгкими. Лёгкие (лат. pulmo, др.-греч. πνεύμων) расположены в грудной полости в окружении костей и мышц грудной клетки. В лёгких осуществляется газообмен между атмосферным воздухом, достигшим лёгочных альвеол (паренхимы лёгких), и кровью, протекающей по лёгочным капиллярам, которые обеспечивают поступление кислорода в организм и удаление из него газообразных продуктов жизнедеятельности, в том числе — углекислого газа. Благодаря функциональной остаточной ёмкости (ФОЁ) лёгких в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше дыхательного объёма (ДО). Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции. Без внешнего дыхания человеческий организм обычно может прожить до 5-7 минут (так называемая клиническая смерть), после чего наступают потеря сознания, необратимые изменения в мозге и его смерть (биологическая смерть).

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий