Виды давлений в гидравлике

Техническое обслуживание клапанов

Поддерживайте хорошее состояние клапанов!

Как вы хорошо знаете, клапаны являются прецизионными изделиями и должны снимать точные показания давления, направления и объёма масла гидравлической системы. Поэтому, клапаны должны быть правильно установлены и содержаться в нормальном состоянии.

Причины неисправности клапанов

Загрязнения, такие как грязь, пух, коррозия и отстой могут вызвать неправильную работу и повреждение деталей клапана. Такие загрязнения вызывают заедание клапана, неполное открытие или обдирание поверхности сопряжения до тех пор, пока не начнётся течь. Такие неисправности исключены при содержании оборудования в чистоте.

Точки проверки

Во время поиска неисправностей или ремонта, проверьте следующие детали.

Распределительный клапан давления – Предохранительный клапан

Проверьте седло клапана (седло клапана и тарелка клапана) на предмет течи и задирания. Проверьте на предмет застревания плунжера в корпусе. Проверьте резиновые колечки. Проверьте, не засорён ли дроссель.

Распределительный клапан потока

Проверьте золотник и каналы на предмет неровностей и царапин. Проверьте уплотнения на течь Проверьте на наличие неровностей краёв. Проверьте на наличие царапин на золотнике.

Золотники распределительного клапана потока установлены в корпусе в рассчитанных местах. Это сделано для обеспечения наименьшего зазора между корпусом и золотником для предотвращения внутренней течи и максимального качества сборки. Поэтому, устанавливайте золотники в соответствующие отверстия.

Бортовые системы самодиагностики

В определенной мере современные гидросистемы стали проще в обслуживании. У традиционных гидромеханических систем иногда было сложно найти причину неисправности. В электронную систему управления электрогидравлических систем может быть встроена функция самодиагностики, которая ускоряет и упрощает поиск и устранение неисправностей. Электронная система управления теперь обеспечивает взаимосвязь между гидросистемой и оператором, это важный этап в развитии и улучшении рабочих характеристик гидросистем. Дисплей на панели приборов позволяет операторам и специалистам по сервису контролировать величины давления в гидросистеме и диагностировать неисправности, а также узнавать срок очередного ТО, находясь в кабине и не подсоединяя к системе компьютер.

Типы гидравлических насосов

Сегодня на многих машинах установлен один из трёх насосов:

— Поршневой насос

Все насосы работают по роторно-поршневому типу, жидкость приводится в действие вращением детали внутри насоса.

Поршневые насосы делятся на два типа:

— Радиально поршневого типа

Насосы аксиально поршневого типа называются так, потому что поршни насоса расположены параллельно оси насоса.

Насосы радиально поршневого типа называются так, потому что поршни расположены перпендикулярно (радиально) оси насоса. Насосы обоих типов совершают возвратно поступательное движение. Поршни двигаются вперёд и назад и используют роторно поршневое движение.

Рабочий объём гидравлического насоса

Рабочий объём, значит объём масла, которое насос может прокачать или переместить в каждом цилиндре.

Гидравлические насосы разделяются на два типа:

— Фиксированного рабочего объёма

— Изменяемого рабочего объёма

Насосы фиксированного рабочего объёма прокачивают одинаковое количество масла за каждый цикл. Чтобы изменить объём такого насоса необходимо изменить скорость насоса. Нсосы с изменяемым рабочим объёмом могут менять объём масла в зависимости от цикла. Это может быть сделано без изменения скорости. Такие насосы имеют внутренний механизм, который регулирует выходное количество масла. Когда давление в системе падает, объём возрастает, когда давление в системе возрастает, объём уменьшается автоматически.

  Насос фиксированного рабочего объема Насос изменяемого рабочего объема
Мощность
Конструкция

Классификация привода

Что такое привод?

Привод является частью гидравлической системой, которая производит энергию. Привод преобразует гидравлическую энергию в механическую энергию для совершения работы. Различают линейный и роторный приводы. Гидравлический цилиндр является линейным приводом. Усилие гидравлического цилиндра направлено прямолинейно. Гидравлический мотор является роторным приводом. Выходным усилием является крутящий момент и роторное действие.

Цилиндры однократного действия.

Гидравлическая жидкость может двигаться только в один конец цилиндра. Возврат поршня в первоначальное положение достигается действием силы тяжести.

Цилиндры двойного действия.

Гидравлическая жидкость может перемещаться в оба конца цилиндра, поэтому поршень может двигаться в обоих направлениях.

В обоих типах цилиндров, поршень двигается в цилиндре в направлении, в котором жидкость давит на поршень. Различные типы уплотнения используются в поршнях для предотвращения течи.

Где инновационные гидравлические технологии находят наибольшее применение?

Передовые разработки в сфере гидравлики широко реализуются в морском и наземном бурении, строительстве, современном сельском хозяйстве — там, где нужны компактные, высокопроизводительные системы с большим рабочим ресурсом. Инновации пользуются спросом, прежде всего, в Европе и США, поэтому там научный прогресс наиболее заметен. Его подкрепляет интерес производителей к разработкам: рынок Старого и Нового Света — крупнейшая площадка сбыта прогрессивной гидравлики.

За последние 5-7 лет устойчивый рост внимания к научным разработкам демонстрирует Канада и Мексика: там передовое гидрооборудование востребовано в первую очередь в сельском хозяйстве и строительстве. Производители из Азиатско-Тихоокеанского региона стимулируют исследования в области гидравлики для энергетики (как Бразилия) и обрабатывающей промышленности.

«Домашний» четвероногий робот Boston Dynamics SpotMini

Первые в мире беспилотные наземные капсулы для перевозки пассажиров

Интерес научного сообщества и производителей к инновациям в области гидравлики способствует бурному прогрессу в этой области. Ученые смело говорят и даже строят прогнозы относительно ближайшего будущего. В планах у них:

  • синтез искусственного интеллекта и роботов, оснащенных совершенными гидромеханизмами — эти устройства практически на 100% будут имитировать плавность движений человеческого тела, но точность их будет многократно выше;
  • создание нанороботов для медицинских целей: гидрочипы будут уменьшены в десятки раз, что даст возможность уменьшить инвазивность хирургических операций и фактически «вычищать» повреждения;
  • конструирование био-протезов — гидравлических конечностей, пальцев, суставов, неотличимых от настоящих;
  • использование гидропневмоустройств в наземных беспилотниках: применение авиаконструкторских технологий в разы повысит скорость перемещения пассажиров и грузов по земле.

Робот-«дворецкий» в аэропорту

Российские компании, к сожалению, не имеют должного «запаса мощности», но научная мысль и производство гидросистем в РФ не отстают от мировых трендов. Усилия ученых прикладываются в аэрокосмической области, нефтяной, металлургической, оборонной и других сферах промышленности. Поэтому можно смело утверждать: российские специалисты вносят немалый вклад в превращение футуристичных прогнозов о развитии гидравлики в реальность.

Инновационный гидравлический протез

Виды давлений в гидравлике — Пожарная безопасность

 О чем эта статья

Существуют несколько типов давления, различающиеся между собой величиной относительно которой производятся измерения. В статье рассказывается про различные типы давления.

Вы также узнаете какими приборами какие типы давления можно измерять. Вы также можете посмотреть другие статьи.

Например, «Типы корпусов микросхем» или «Шестипроводный способ подключения мостовой схемы ».

Давление — действующая сила находящаяся на поверхности тела, деленная на площадь данной поверхности. В системе СИ измеряется в Па (Паскалях).

Метрологи измеряют давление в единицах измерения – миллибар, которая равно 100 Па.

Аксиально-поршневой насос и гидромотор устройство и принцип работыАксиально-поршневой насос и гидромотор устройство и принцип работы

Для обозначения типа в нашем каталоге в разделе датчики давления у каждого датчика существует специально поле «Тип измеряемого давления». Разберем какие бывают типы.

Виды давлений в гидравлике

Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе.

В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу.

Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.

Основа работы гидравлики любого вида — использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.

Проверка давления в гидравлике трактора МТЗПроверка давления в гидравлике трактора МТЗ

Спецтехника с гидроузламиГидрофицированные роботы на заводе «Камаз»

Виды гидравлики с разными гидроприводами

В оборудовании для разных сфер используются гидроприводы одного из двух типов — гидродинамические, работающие преимущественно на кинетической энергии, или объемные.

Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах.

Системы с компактными и производительными объемными приводами устанавливают на сверхмощных экскаваторах и станках — их рабочее давление достигает 300 МПа и больше.

Пример техники с объемным гидроприводомРабочее колесо гидротурбины для гидроагрегата ГЭС

Объемные гидроприводы используют в большинстве современных гидростистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:

  • характеру движения выходных звеньев гидромотора — оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
  • регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
  • схемам циркуляции рабочих жидкостей — компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
  • источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
  • типу двигателя — электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.

Турбина Siemens с гидроприводом

Конструкция гидравлики разных видов

В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:

  • рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
  • гидронасос;
  • бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
  • клапаны — обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
  • фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки — для удаления примесей механического характера;
  • система, управляющая всеми элементами;
  • контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.

Классическая схема раздельноагрегатной гидросистемы

В зависимости от вида гидросистемы, ее конструкция может отличаться — это влияет на сферу применения устройства, его рабочие параметры.

Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»

Область применения

Область применения гидрораспределителей не ограничивается отдельными сферами деятельности. Практически в каждой гидравлической системе используется такой механизм. Наиболее распространенными являются золотниковые модели. Это связано с тем, что они простые в использовании, относительно дешевые и имеют небольшие размеры. С помощью таких распределителей обычно происходит управление движением компонентов двигателей.

Обычно встретить такие гидравлические распределители можно на:

  • станках:
  • крановых установках, подъемниках и манипуляторах;
  • грузовых автомобилях;
  • сельскохозяйственной технике;
  • специальной технике, применяемой в строительстве и горнодобывающей промышленности.

Сфера применения таких моделей ограничивается лишь уровнем давления рабочей жидкости. При превышении дозволенных показателей система может не выдержать и выйти из строя из-за потери жидкости. При больших нагрузках стоит отдавать предпочтение клапанным устройствам.

Крановые модели редко применяются из-за небольшой пропускной способности. Они часто встречаются в комплексе с золотниковыми и клапанными устройствами в качестве дополнительного механизма.

Работа гидрораспределителяРабота гидрораспределителя

При покупке распределителя следует изучить технические характеристики каждой модели. Иногда лучше всего посоветоваться со специалистом. От распределителя напрямую зависит надежность работы гидросистемы. Стоит отметить, что даже если правильно подобрать устройство, могут возникнуть проблемы, если неправильно его установить

Поэтому к такому важному этапу также стоит отнестись с особым вниманием

Чистота гидравлической жидкости

Часто причиной неисправностей и падения производительности гидросистем бывает загрязнение. Дорожно-строительные машины, как правило, работают в условиях высокой запыленности, в грязи, в окружении множества потенциальных источников загрязнения. Загрязнения могут легко попасть в гидросистему при замене навесного оборудования, если на разъемах РВД налипла грязь. Люди, обслуживающие машину, должны следить, чтобы не внести загрязнения и влагу в гидросистему, например, при заправке жидкости через грязную воронку или при выполнении работы грязным инструментом.

Современные, более сложные электрогидравлические системы еще более чувствительны к загрязнениям. Поэтому рекомендуется фильтровать заправляемую жидкость, чего, к сожалению, большинство операторов и сервисменов не делают. Рекомендуется также использовать гидравлическую жидкость с увеличенным сроком службы, чтобы увеличить интервалы ТО, благодаря чему оператор будет реже открывать крышку гидробака, и, следовательно, вероятность попадания через нее загрязнений в гидробак уменьшится. Гидравлическая жидкость должна быть высокого качества и рассчитана на те температуры окружающего воздуха и прочие климатические условия, при которых эксплуатируется машина.

Жидкость должна качественно фильтроваться при работе в системе. То, что считалось достаточно чистым 20 лет назад, сейчас просто неприемлемо. Некоторые производители для увеличения интервалов ТО стали использовать гидравлические фильтры увеличенной емкости, другие используют фильтрующие элементы из материалов повышенного качества или с меньшими размерами ячеек. Для уменьшения вероятности попадания загрязнений некоторые производители современных дорожно-строительных машин устанавливают воздушные фильтры в сапуне гидробака, обеспечивают многоступенчатую фильтрацию жидкости в гидросистеме, начиная с сетчатого фильтра на заборнике в гидробаке и заканчивая фильром в сливной магистрали.

Не соответствующая потребностям фильтрация также может отрицательно влиять на производительность машины. Если, например, фильтры засорятся, на прокачивание жидкости в системе будет затрачиваться больше мощности. Рекомендуется заменять гидравлические фильтры не реже одного раза в шесть месяцев и один раз в год следует проводить общее ТО машины, в том числе заменять жидкость в гидросистеме, топливные фильтры: тонкой очистки и фильтр-отстойник.

Рекомендуется регулярно, примерно через 500 моточасов, проводить лабораторные анализы, отслеживая степень загрязнения жидкости и наличие в ней необычных частиц, свидетельствующих о наличии повышенного износа тех или иных компонентов, особенно если машина эксплуатируется в тяжелых условиях. Фитинги для отбора проб и замеров показателей на современных машинах легко доступны с уровня земли, чтобы упростить регулярные проверки. У некоторых производителей гидросистемы оснащаются краном для слива отстоя, это уменьшает вероятность попадания загрязнений в жидкость, возвращающуюся в гидробак. 

Принцип действия

Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.

Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.

Перспективы развития

Перспективы развития гидропривода во многом связаны с развитием электроники. Так, совершенствование электронных систем позволяет упростить управление движением выходных звеньев гидропривода. В частности, в последние 10-15 лет стали появляться бульдозеры, управление которыми устроено по принципу джойстика.

С развитием электроники и вычислительных средств связан прогресс в области диагностирования гидропривода. Процесс диагностирования некоторых современных машин простыми словами может быть описан следующим образом. Специалист подключает переносной компьютер к специальному разъёму на машине. Через этот разъём в компьютер поступает информация о значениях диагностических параметров от множества датчиков, встроенных в гидросистему. Программа или специалист анализирует полученные данные и выдаёт заключение о техническом состоянии машины, наличии или отсутствии неисправностей и их локализации. По такой схеме осуществляется диагностирование, например, некоторых современных ковшовых погрузчиков. Развитие вычислительных средств позволит усовершенствовать процесс диагностирования гидропривода и машин в целом.

Важную роль в развитии гидропривода может сыграть создание и внедрение новых конструкционных материалов. В частности, развитие нанотехнологий позволит повысить прочность материалов, что позволит уменьшить массу гидрооборудования и его геометрические размеры, повысить его надёжность. С другой стороны, создание прочных и одновременно эластичных материалов позволит, например, уменьшить недостатки многих гидравлических машин, в частности, увеличить развиваемое диафрагменными насосами давление.

В последние годы наблюдается существенный прогресс в производстве уплотнительных устройств. Новые материалы обеспечивают полную герметичность при давлениях до 80 МПа, низкие коэффициенты трения и высокую надёжность.

Добавьте свой комментарий:

Гидравлическая система экскаватора и ее особенности

     Гидравлика сегодня устанавливается на любой экскаваторной технике, поскольку она является ключевой системой, обеспечивающей ее функционирование. Каждый элемент ее по отдельности и целая система в сборе служит в первую очередь для отбора части силы вращения у основного двигателя, преобразования ее в энергию жидкостных потоков и перенаправления ее к исполнительным органам и навесному оборудованию.

Гидравлическая система управления экскаваторами состоит из целого комплекта узлов и агрегатов, в том числе из:

  • сдвоенной регулируемой помпы с суммирующим регулятором мощности;
  • клапанного блока;
  • распределительной аппаратуры;
  • гидравлического мотора;
  • гидроцилиндра;
  • фильтрующих элементов;
  • коллектора;
  • бака для рабочей жидкости;
  • гидролиний;
  • соединителей, фитингов и крепежей.

     Гидравлический экскаватор может оснащаться системой двух типов – динамической или объемной. Первый вариант применяется крайне редко по причине сложной конструкции, низкой ремонтопригодности и больших габаритов агрегатов. Чаще всего в Украине спецтехника оборудуется объемной гидравликой, ключевую роль в которой играет давление.      Объемный гидропривод имеет более компактные габариты по сравнению с динамической системой, но скорость перемещения жидкой среды внутри нее довольно малая. Для своей работы гидравлика объемного типа нуждается в оборудовании, способном функционировать при напоре до 350 МПа. Рабочие камеры гидравлического насоса и двигателя попеременно заполняются гидравлическим маслом и вытесняются оттуда под высоким напором.

Виды

Разделение на виды производится по количеству запорных элементов, всего существует два различных устройства:

Односторонний гидрозамок

Схема работы одностороннего гидрозамка

Составные части одностороннего гидрозамка:

  1. Шарик (является запорно-регулирующим элементом);
  2. Пружина;
  3. Управляющий элемент;

Принцип работы рассмотрим последовательно по рисункам:

  • «а») Подается давление в отсек обозначенный буквой «А». Управляющее влияние отсутствует.
  • «б») Жидкость свободно проходит из «А» в полость «Б».
  • «в») Если попытаться подать давление на отсек «Б», не подавая на «У», то запирающее устройство «1» под влиянием пружины «2» не пропустит вещество в полость «А».
  • «г») Подав давление в «У», мы создадим управляющее действие, в результате которого шарик «1» сдвинется и начнет пропускать жидкость из полости «Б» в «А».

Двусторонний гидрозамок

Схема работы двухстороннего гидрозамка

Составные части двустороннего гидрозамка:

  1. Два запорных шарика
  2. Две пружины
  3. Один управляющий элемент

Принцип действия, рассмотрим на последовательности рисунков:

  • «а») Давление не подается обе полости закрыты запирающими устройствами.
  • «б») Подается давление в «А», жидкость отодвигает запорный шарик, и поступает в «В». Та же сила действует на управляющую часть, которая отодвигает запирающее устройство, и дает возможность течь жидкости из полости «Г» в «Б».
  • «в») Давление подается на полость «Б». Отодвигается запорный шарик и жидкость движется из «Б» в «Г» при этом управляющий элемент отодвигает шарик и открывает движение жидкости из «В» в «А».

Также существует следующие дополнительные классификации:

  • По виду запорного элемента. Конусовидные и шариковые. В примере выше мы рассмотрели устройства с шаровидным запорным элементом, но при применении конусовидного схема работы принципиально не изменится.
  • По вид управляющего воздействия. Существуют устройства с гидравлическим пневматическим, электронным, механическим управляющим воздействием. В примере выше был рассмотрен пример с гидравлическим воздействием на управляющую часть.

Как остановить экскаватор?

Если возникшая неисправность привела к потере функций машины, или (и) негативно сказывается на безопасности ее эксплуатации, или наносит вред окружающей среде (например, обрыв рукава высокого давления), то машину следует немедленно остановить.

Для обеспечения безопасности при остановке машины необходимо провести следующие мероприятия:

  • опустить все подвешенные рабочие органы машины или зафиксировать их механическим способом;
  • сбросить давление во всей гидросистеме;
  • разрядить все гидроаккумуляторы;
  • снять давление с преобразователей давления;
  • выключить электрическую управляющую систему;
  • отключить электрическое питание.

При этом следует учесть, что рабочие жидкости, используемые в гидроприводах, являются малосжимаемыми по сравнению с газом и при снижении давления расширяются незначительно

Однако в тех местах гидросистемы, где может находиться сжатый газ (из-за недостаточной деаэрации или при подключенном гидроаккумуляторе), уменьшать давление следует очень осторожно

Автоматизация функций управления

Электрогидравлические системы позволяют поддерживать функции автоматического или полуавтоматического управления функциями машины, за счет чего не только появилась возможность выбора режима работы, уменьшается время выполнения цикла и повышается точность работы, но и вообще упрощается и облегчается эксплуатация машины. Электронные системы автоматического управления повышают производительность машин и упрощают работу оператора. Даже неопытный оператор сможет выполнять работы с высоким качеством за счет автоматизации управления, а опытные операторы смогут быстрее освоить управление новой машиной и увеличить производительность, то есть выполнять работы больше, чем раньше.

Например, повышают производительность труда оператора такие автоматические функции, как ограничение высоты подъЖЖЖема ковша и уменьшение раскачивания ковша при движении машины. Когда машина внедряет ковш в штабель материала, она работает жестко и резко, но как только погрузчик, набрав материал в ковш, отъезжает от штабеля, автоматически включается функция ограничения раскачивания ковша, обеспечивающая плавное движение машины. Все эти ограничения можно задать не выходя из кабины. Для замены навесного оборудования раньше требовались 1–2 человека и несколько минут времени. Теперь благодаря автоматизации оператор выполняет эту операцию за считаные секунды не выходя из кабины.

Нивелирование ранее производилось по столбикам, мерной ленте и натянутым шнурам. Сегодня оно выполняется средствами лазерной, ультразвуковой и спутниковой навигации GPS/ГЛОНАСС намного проще, быстрее и точнее

Например, у автогрейдеров автоматическая функция управления отвалом дает возможность оператору сосредоточить внимание на одном конце отвала, в то время как бортовой компьютер контролирует положение другого конца. Это позволяет увеличить скорость движения машины при нивелировании и обеспечивает более точное выполнение работы

У некоторых бульдозеров в системе управления гидросистемой имеется несколько режимов управления отвалом. Например, при выполнении финишной планировки можно уменьшить скорость выполнения команд и сделать движения очень плавными. Если же бульдозер перемещает большие массы земли, управление можно сделать более быстрым и резким.

Это только несколько примеров, когда гидросистема облегчает и упрощает работу оператора и повышает его производительность. 

Преимущества гидравлического оборудования

Гидравлика есть во многих машинах начиная от экскаваторов и бульдозеров и заканчивая экскаваторами и автогрейдерами.

Наличие такой системы обеспечивает следующие преимущества:

  1. Грузоподъемность: гидравлические системы прикладывают больше усилий, чем механические, электрические или пневматические системы, и выдерживают более высокие нагрузки.
  2. Долговечность: гидравлические системы служат дольше, чем их механические или электрические аналоги. Усовершенствованная конструкция такого оборудования более проста, что минимизирует риск разрушения. Гидравлические системы содержат меньше движущихся частей и компонентов, что облегчает их обслуживание и ремонт.
  3. Точность: большинство гидравлических систем легче контролировать, чем механические или пневматические. Таким образом, они обеспечивают более надежные результаты в ситуациях, где важна точность определения.
  4. Безопасность: гидравлика не производит искр, которые могут представлять опасность или повышенный риск взрыва на некоторых объектах. Такое оборудование можно уверенно и спокойно использовать в таких местах, как шахты и химические заводы.
  5. Бесшумная работа: поскольку гидравлика имеет меньше быстро движущихся частей, она, как правило, производит меньше шума, что может быть важным фактором на некоторых рабочих местах.

Еще одно преимущество – экономичность. Гидравлические системы легче обслуживать, они требуют менее частой замены деталей и компонентов, что приводит к снижению эксплуатационных расходов.

Кавитация насоса

Когда происходит кавитация?

Кавитация случается, когда масло не полностью заполняет предназначенное для заполнения пространство в насосе. Это способствует появлению воздушных пузырьков, которые вредны для насоса. Представим, что впускная линия насоса узкая, это вызывает падение входящего давления. Когда давление низкое, масло не может поступать в насос так же быстро, как и выходить из него. Результатом является то, что пузырьки воздуха образуются в поступающем масле.

Воздух в масле

Такое снижение давления приводит к появлению некоторого количества растворённого воздуха в масле и воздух заполняет полости. Воздух в масле в виде пузырьков, так же заполняет полости. Когда заполненные воздухом полости, которые образованы при низком давлении, поступают в область высокого давления насоса, они разрушаются. Это создаёт действие, равносильное взрыву, которое разбивает или выносит мелкие частицы насоса и вызывает чрезмерный шум и вибрацию насоса.

Последствия взрыва

Разрушения, происходящее постоянно, вызывают взрыв. Сила этого взрыва достигает 1000 кг/см² и мелкие металлические частицы выносятся из насоса. Если насос работает при кавитации длительное время, он может быть серьёзно повреждён.

Как выполняется ремонт

Поскольку гидравлическая система в машинах и механизмах играет значимую роль, ее обслуживание часто доверяют высококвалифицированным специалистам занимающихся именно этим видом деятельности компаний. Такие фирмы обычно оказывают весь комплекс услуг, связанных с ремонтом спецтехники и гидравлики.

Разумеется, в арсенале этих компаний имеется все необходимое для производства подобных работ оборудование. Ремонт гидравлических систем обычно выполняется на месте. Перед его проведением при этом в большинстве случаев должны быть произведены разного рода диагностические мероприятия. Для этого компании, занимающиеся обслуживанием гидравлики, используют специальные установки. Необходимые для устранения проблем комплектующие сотрудники таких фирм также обычно привозят с собой.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий