Фторид водорода

Фтороводород

Фтороводород выше 19 5 С представляет собой бесцветный газ с резким раздражающим дыхательные пути действием, а ниже указанной температуры кипения — легкоподвижную бесцветную жидкость. HF характеризуется высоким значением электрического момента диполя ( 0 64 — Ю 29 Кл — м), превосходящим электрический момент диполя воды, сернистого газа и аммиака. Жидкий фторид водорода имеет большое значение диэлектрической постоянной, равное 83 6 при 0 С.

Фтороводород раздражает верхние дыхательные пути.

Фтороводород, присоединяясь к алкену, вызывает одновременно его полимеризацию.

Фтороводород, используемый для электрохимического фторирования органических соединений , является перспективным растворителем для электрохимических исследований. Он имеет высокую диэлектрическую постоянную ( 80 при 0 С), менее вязок, чем вода, прозрачен при ультрафиолетовом облучении в диапазоне до 165 нм и трудно окисляется. Это сильно протонирующий растворитель, который в отличие от серной кислоты не является окислителем. Он растворяет фториды многих металлов, образуя высокопроводящие растворы, кроме того в нем растворимы и многие органические соедш.

Фтороводород — бесцветный легко сжижаемый ( при 19 5) газ с резким запахом. Он поражает дыхательные пути, во влажном воздухе дымит. Водный раствор его называют фтороводородной или ( в технике) плавиковой кислотой. Эта слабая кислота диссоциирует с образованием анионов F -, HF. Пары ее очень ядовиты, вызывают ожоги кожи.

Средняя молекулярная масса и давление насыщенного пара фтороводорода.

Фтороводород хорошо растворим в воде, его водные растворы HF ( aq) называют фтороводородной ( плавиковой) кислотой.

Фтороводород ядовит, поэтому опыт проводить под тягой.

Фтороводород, выделившийся при пирогидролизе Mg. Фторид-ион определяют спектрофотометри-чески по ослаблению окраски комплекса тория ( IV) сарсеназо.

Фтороводород значительно лучше растворяет изобутан, чем серная кислота, поэтому соотношение изобутан: алкен в зоне реакции ( в пленке кислоты, в которой идет реакция) значительно выше. Вследствие этого алкилирование протекает практически без побочных реакций и выход основных продуктов выше, чем при катализе серной кислотой. Заданную концентрацию фтороводорода поддерживают за счет отбора части катализатора на регенерацию. Фтороводород легко отделяется от воды перегонкой. Расход HF составляет примерно 0 7 кг на 1 т алкилата.

Фтороводород разрушает стекло ( образуются S1F4 и H2 ); при работе с HF используют аппаратуру из полимерных материалов, меди или свинца.

Фтороводород вместе с парами воды отводят в медный сосуд, охлаждаемый до — 10 С, где и конденсируется 70 — 75 % HF, содержащей значительное число примесей. Для получения чистой фто-роводородной кислоты технический продукт подвергают дистилляции во фторопластовой аппаратуре.

Фтороводород — это газ, который в — воде растворяется неограниченно.

Фтороводород в жидком и газообразном состояниях значительно ассоциирован вследствие образования сильных водородных связей ( см. разд.

Строение фторидов элементов третьего периода.

Требования безопасности

Плавиковая кислота пожаро- и взрывобезопасна. При превышении ПДК возможны острые и хронические отравления с изменением крови и кроветворных органов, органов пищеварительной системы, отёк лёгких. Обладает выраженным эффектом при вдыхании, раздражающим действием на кожу и слизистые оболочки глаз (вызывает болезненные ожоги и изъязвления); кожно-резорбтивным, эмбриотропным, мутагенным и кумулятивным действием.

Плавиковая кислота — токсичное вещество. В соответствии с ГОСТ 12.1.007.76 плавиковая кислота является токсичным высокоопасным веществом по воздействию на организм (2-ого класса опасности).

При попадании на кожу в первый момент не вызывает сильной боли, легко и незаметно всасывается, но через короткое время вызывает отёк, боль, химический ожог и общеядовитое действие. Симптомы от воздействия слабо концентрированных растворов могут появиться через сутки и даже более после попадания их на кожу.

При попадании в кровь через кожу связывает кальций крови и может вызвать нарушение сердечной деятельности. Ожоги площадью более чем 160 см2 опасны возможными системными токсическими проявлениями.

Токсичность плавиковой кислоты и её растворимых солей, предположительно, объясняется способностью свободных ионов фтора связывать биологически важные ионы кальция и магния в нерастворимые соли (отравление фторидами). Поэтому для лечения последствий воздействия плавиковой кислоты часто используют глюконат кальция как источник ионов Ca2+. Пострадавшие участки при ожогах плавиковой кислотой промываются водой и обрабатываются 2,5 % гелем глюконата кальция. Тем не менее, поскольку кислота проникает сквозь кожу, простого промывания недостаточно и необходимо обращение к врачу для проведения лечения. Высокую эффективность показали внутриартериальные инфузии хлорида кальция.

Предельно допустимая концентрация (ПДК) плавиковой кислоты:

Вид ПДК максимально разовая (ПДКм. р.) ПДК среднесуточная (ПДКс. с.)
ПДК в воздухе рабочей зоны, мг/м³ (в пересчёте на ионы фтора) 0,5 0,1
ПДК в атмосферном воздухе, мг/м³ (в пересчёте на ионы фтора) 0,02 0,005

Свойства

Физические свойства

  • Критическая температура фтористого водорода 188 °C, критическое давление 64 атм.
  • Теплота испарения жидкого HF в точке кипения составляет лишь 7,5 кДж/моль (примерно в 6 раз меньше, чем у воды при 20 °C). Это обусловлено тем, что само по себе испарение мало меняет характер ассоциации фтористого водорода (димерная форма, характерная для жидкости, сохраняется и в парах — в отличие от фазового перехода воды).
  • Диэлектрическая проницаемость жидкого фтористого водорода (84 при 0 °C) очень близка к значению д.п. для воды.

Химические свойства

Химические свойства HF зависят от присутствия воды. Сухой фтористый водород не действует на большинство металлов и не реагирует с оксидами металлов. Однако если реакция начнется, то дальше она некоторое время идет с автокатализом, так как в результате взаимодействия количество воды увеличивается:

MgO+2HF→MgF2+H2O{\displaystyle {\mathsf {MgO+2HF\rightarrow MgF_{2}+H_{2}O}}}

Жидкий HF — сильный ионизирующий растворитель. Все электролиты, растворённые в нём, за исключением хлорной кислоты HClO4, являются основаниями:

HCl+2HF⇄H2Cl++HF2−{\displaystyle {\mathsf {HCl+2HF\rightleftarrows H_{2}Cl^{+}+HF_{2}^{-}}}}
В жидком фтороводороде кислотные свойства проявляют соединения, которые являются акцепторами фторид-ионов, например, BF3, SbF5:
BF3+2HF→H2F++BF4−{\displaystyle {\mathsf {BF_{3}+2HF\rightarrow H_{2}F^{+}+^{-}}}}
Амфотерными соединениями в среде жидкого фтороводорода являются, например, фториды алюминия и хрома(III):
3NaF+AlF3→3Na++AlF63−{\displaystyle {\mathsf {3NaF+AlF_{3}\rightarrow 3Na^{+}+^{3-}}}}
(AlF3 — как кислота)
AlF3+3BF3→Al3++3BF4−{\displaystyle {\mathsf {AlF_{3}+3BF_{3}\rightarrow Al^{3+}+3^{-}}}}
(AlF3 — как основание)

Фтороводород в газообразном состоянии и в виде водного раствора реагирует с диоксидом кремния:

При условии, если фтороводород в газообразном состоянии:
4HF+SiO2→SiF4+2H2O{\displaystyle {\mathsf {4HF+SiO_{2}\rightarrow SiF_{4}+2H_{2}O}}}
При условии, если фтороводород в виде водного раствора:
6HF+SiO2→H2SiF6+2H2O{\displaystyle {\mathsf {6HF+SiO_{2}\rightarrow H_{2}+2H_{2}O}}}

Фтороводород неограниченно растворяется в воде, при этом происходит ионизация молекул HF:

2HF+H2O⇄HF2−+H3O+{\displaystyle {\mathsf {2HF+H_{2}O\rightleftarrows HF_{2}^{-}+H_{3}O^{+}}}}
Kd= 7,2·10−4
HF+F−⇄HF2−{\displaystyle {\mathsf {HF+F^{-}\rightleftarrows HF_{2}^{-}}}}
Kd= 5,1
Водный раствор фтороводорода (плавиковая кислота) является кислотой средней силы. Соли плавиковой кислоты называются фторидами. Большинство их труднорастворимо в воде, хорошо растворяются лишь фториды NH4, Na, К, Ag(I), Sn(II), Ni(II) и Mn(II). Все соли плавиковой кислоты ядовиты.

Химические свойства

Самый активный неметалл, бурно взаимодействует почти со всеми веществами, кроме фторидов в высших степенях окисления и редких исключений — фторопластов, и с большинством из них — с горением и взрывом. Образует соединения со всеми химическими элементами, кроме гелия, неона, аргона. Ко фтору при комнатной температуре устойчивы некоторые металлы за счёт образования плотной плёнки фторида, тормозящей реакцию со фтором — Al, Mg, Cu, Ni. Контакт фтора с водородом приводит к воспламенению и взрыву в кварцевых сосудах даже при очень низких температурах (до −252°C), в магниевых сосудах для начала реакции нужен небольшой нагрев. В атмосфере фтора горят даже вода и платина:

2F2+2H2O→4HF↑+O2↑{\displaystyle {\mathsf {2F_{2}+2H_{2}O\rightarrow 4HF\uparrow +O_{2}\uparrow }}}
Pt+2F2 →350−400oC PtF4{\displaystyle {\mathsf {Pt+2F_{2}\ {\xrightarrow {350-400^{o}C}}\ PtF_{4}}}}

К реакциям, в которых фтор формально является восстановителем, относятся реакции разложения высших фторидов, например:

2CoF3→2CoF2+F2↑{\displaystyle {\mathsf {2CoF_{3}\rightarrow 2CoF_{2}+F_{2}\uparrow }}}
2MnF4→2MnF3+F2↑{\displaystyle {\mathsf {2MnF_{4}\rightarrow 2MnF_{3}+F_{2}\uparrow }}}

Фтор также способен окислять в электрическом разряде кислород, образуя фторид кислорода OF2 и диоксидифторид O2F2. Под давлением или при облучении реагирует с криптоном и ксеноном с образованием фторидов.

Во всех соединениях фтор проявляет степень окисления −1. Чтобы фтор проявлял положительную степень окисления, требуется создание эксимерных молекул или иные экстремальные условия. Это требует искусственной ионизации атомов фтора.

Не реагирует с гелием, неоном, аргоном, азотом, тетрафторметаном. При комнатной температуре не реагирует с сухим сульфатом калия, углекислым газом и закисью азота. Без примеси фтороводорода при комнатной температуре не действует на стекло.

Применение

Крупный потребитель фтороводородной кислоты — алюминиевая промышленность.

  • Раствор фтороводорода применяется для прозрачного травления силикатного стекла (например — нанесение надписей — для этого стекло покрывают парафином, прорезая отверстия для травления). Матовое травление получают в парах фтороводорода.
  • Для травления кремния в полупроводниковой промышленности.
  • В составе травильных, травильно-полировальных смесей, растворов для электрохимической обработки нержавеющей стали и специальных сплавов.
  • Получение фторидов, кремнефторидов и борфторидов, фторорганических соединений, а также соответствующих кислот (кремнефтороводородная кислота и борфтороводородная кислота), синтетических смазочных масел и пластических масс.
  • Для растворения силикатов при различного рода анализах.
  • В процессе алкилирования, в качестве катализатора в реакции изобутана и олефина.

Атом и молекула гафния. Формула гафния. Строение атома гафния:

Гафний (лат. Hafnium, от лат. Hafnia – латинское название Копенгагена) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Hf и атомным номером 72. Расположен в 4-й группе (по старой классификации – побочной подгруппе четвертой группы), шестом периоде периодической системы.

Гафний - Последний СТАБИЛЬНЫЙ Металл На Земле!Гафний — Последний СТАБИЛЬНЫЙ Металл На Земле!

Гафний – металл. Относится к переходным металлам.

Как простое вещество гафний при нормальных условиях представляет собой твёрдый, тяжёлый, тугоплавкий металл серебристо-белого цвета.

Молекула гафния одноатомна.

Химическая формула гафния Hf.

Электронная конфигурация атома гафния 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d2 6s2. Потенциал ионизации (первый электрон) атома гафния равен 658,52 кДж/моль (6,825070(12) эВ).

Строение атома гафния. Атом гафния состоит из положительно заряженного ядра (+72), вокруг которого по шести оболочкам движутся 72 электрона. При этом 70 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку гафний расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и пятая – внутренние оболочки представлены s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлены s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома гафния на 5d-орбитали находятся два неспаренных электрона. На внешнем энергетическом уровне атома гафния на 6s-орбитали находятся два спаренных электрона. В свою очередь ядро атома гафния состоит из 72 протонов и 106 нейтронов. Гафний относится к элементам d-семейства.

Радиус атома гафния (вычисленный) составляет 208 пм.

Атомная масса атома гафния составляет 178,49(2) а. е. м.

Примечания

  1. Главным образом в эмали зубов
  2. Ахметов Н. С. «Общая и неорганическая химия».
  3. Pauling L., Keaveny I., Robinson A. B. J. Solid State Chem., 1970, Vol. 2, Issue 2, p. 225—227.
  4. J. Chem. Phys. 49 (1968) 1902.
  5. Энциклопедический словарь юного химика. Для среднего и старшего возраста. Москва, Педагогика-Пресс. 1999 год.
  6. Гринвуд Н., Эрншо А. «Химия элементов» т. 2, М.: БИНОМ. Лаборатория знаний, 2008 стр. 147—148, 169 — химический синтез фтора
  7. По данным National Toxicology Program
  8. в виде фторидов и фторорганических соединений
  9. Н. В. Лазарев, И. Д. Гадаскина. «Вредные вещества в промышленности». Том 3, страница 19.

Строение молекулы

Молекула фтороводорода сильно полярна, μ = 0,64·10−29 Кл·м. Фтороводород в жидком и газообразном состояниях имеет большую склонность к ассоциации вследствие образования сильных водородных связей. Энергия водородных связей FH•••FH приблизительно составляет 42 кДж/моль, а средняя степень полимеризации в газовой фазе (при температуре кипения) ≈4. Даже в газообразном состоянии фтороводород состоит из смеси полимеров H2F2, H3F3, H4F4, H5F5, H6F6. Простые молекулы HF существуют лишь при температурах выше 90 °C. Вследствие высокой прочности связи термический распад фтороводорода становится заметным лишь выше 3500 °C (что выше температуры плавления вольфрама — самого тугоплавкого из металлов). Для сравнения — у воды термический распад становится заметным при температурах выше 2000 °C.

В кристаллическом состоянии HF образует орторомбические кристаллы, состоящие из цепеобразных структур: угол HFH = 116 °, d(F-H) = 95 пм, d(F•••H) = 155 пм. Аналогичные зигзагообразные

цепи с углом HFH = 140°) имеют и полимеры HF, существующие в газовой фазе.

1. Строение молекулы

Молекула фтороводорода сильно полярна, μ = 0,64×10−29 Кл·м. Фтороводород в жидком и газообразном состояниях имеет большую склонность к ассоциации вследствие образования сильных водородных связей. Энергия водородных связей FH•••FH приблизительно составляет 42 кДж/моль, а средняя степень полимеризации в газовой фазе (при температуре кипения) ≈4. Даже в газообразном состоянии, фтороводород состоит из смеси полимеров H2F2, H3F3, H4F4, H5F5, H6F6. Простые молекулы HF существуют лишь при температурах выше 90 °C. Вследствие высокой прочности связи, термический распад фтороводорода становится заметным лишь выше 3500 °C (что выше температуры плавления вольфрама — самого тугоплавкого из металлов). Для сравнения — у воды термический распад становится заметным при температурах выше 2000 °C.

В кристаллическом состоянии HF образует орторомбические кристаллы, состоящие из цепеобразных структур: угол HFH = 116 °, d(F-H) = 95 пм, d(F•••H) = 155 пм. Аналогичные зигзагообразные

цепи с углом HFH = 140°) имеют и полимеры HF, существующие в газовой фазе.

Менеджер транзакций для базы данных в оперативной памяти

В этот статье я хочу еще раз пройтись по особенностям работы транзакций в Tarantool, применительно к движку в памяти и дисковому движку. И главное — расскажу про новый менеджер транзакций, который появился в Tarantool версии 2.6, про его особенности, преимущества и устройство.
Когда меня спрашивают, что такое Tarantool, я отвечаю давно въевшееся в мозг: «Tarantool — persistent in-memory noSQL СУБД с хранимыми процедурами на Lua». Но всë не так просто. Вот in-memory — да, в основном в Tarantool используется memtx engine, движок в памяти, однако дисковый движок (vinyl) тоже давным-давно есть, и у него множество нюансов и особенностей. Или noSQL — да, в основном Tarantool используется как noSQL БД, но SQL он тоже умеет, точнее, какую-то его часть, а какую именно — это надо почитать.
Даже с хранимыми процедурами не совсем всё просто: то, что затевалось как способ сделать JOIN в noSQL БД, обросло кооперативно-многозадачной инфраструктурой для работы с сетью, файлами, HTTP, массой модулей и документации; сейчас Tarantool именуют сервером приложений с БД на борту. Да и хранимые процедуры бывают не только на Lua, но и на C.
Но это, в общем, скорее приятные оговорки, дескать, что поделать, Tarantool сложный и поэтому есть много деталей. А когда меня кто-нибудь спрашивал, есть ли в Tarantool’е транзакции и какой у них уровень изоляции, то я отвечал: «есть, serializable, но…» И далее следовали оговорки мелким шрифтом, которые портили радужную картину и время от времени вызывали негодование пользователей.
Больше никаких оговорок, пора рассмотреть новый менеджер транзакций под микроскопом.

Нижнекамскшина И-511

Строение молекулы

Молекула фтороводорода сильно полярна, μ = 0,19 Д. Фтороводород в жидком и газообразном состояниях имеет большую склонность к ассоциации вследствие образования сильных водородных связей. Энергия водородных связей FH•••FH приблизительно составляет 41,5 кДж/моль, а средняя степень полимеризации в газовой фазе (при температуре кипения) ≈4. Даже в газообразном состоянии фтороводород состоит из смеси полимеров H2F2, H3F3, H4F4, H5F5, H6F6. Простые молекулы HF существуют лишь при температурах выше 90 °C. Вследствие высокой прочности связи термический распад фтороводорода становится заметным лишь выше 3500 °C (что выше температуры плавления вольфрама — самого тугоплавкого из металлов). Для сравнения — у воды термический распад становится заметным при температурах выше 2000 °C.

В кристаллическом состоянии HF образует орторомбические кристаллы, состоящие из цепеобразных структур: угол HFH = 116 °, d(F-H) = 95 пм, d(F•••H) = 155 пм. Аналогичные зигзагообразные

цепи с углом HFH = 140°) имеют и полимеры HF, существующие в газовой фазе.

Физические свойства

Эмиссионный спектр излучения атомов водорода на фоне сплошного спектра в видимой области

Эмиссионный спектр атомов водорода. Четыре видимые глазом спектральные линии серии Бальмера

Водород — самый лёгкий газ: он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх. Чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Молекула водорода двухатомна — H2. При нормальных условиях это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9⋅106 Дж/кг, малорастворим в воде — 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Фазовая диаграмма водорода

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-H2, 0,21 % орто-H2.

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.

В 1935 году Уингер и Хунтингтон высказали предположение о том, что при давлении свыше 250 тысяч атм водород может перейти в металлическое состояние. Получение этого вещества в устойчивом состоянии открывало очень заманчивые перспективы его применения — ведь это был бы сверхлёгкий металл, компонент лёгкого и энергоёмкого ракетного топлива. В 2014 году было установлено, что при давлении порядка 1,5—2,0 млн атм водород начинает поглощать инфракрасное излучение, а это означает, что электронные оболочки молекул водорода поляризуются. Возможно, при ещё более высоких давлениях водород превратится в металл. В 2017 году появилось сообщение о возможном экспериментальном наблюдении перехода водорода в металлическое состояние под высоким давлением.

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Равновесная мольная концентрация параводорода в смеси в зависимости от температуры

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1. Десорбированный с угля параводород при нагревании превращается в ортоводород с образованием равновесной смеси. При комнатной температуре равновесна смесь ортоводорода и параводорода в отношении около 75:25. Без катализатора взаимное превращение происходит относительно медленно, что даёт возможность изучить свойства обеих модификаций. В условиях разреженной межзвёздной среды характерное время перехода в равновесную смесь очень велико, вплоть до космологических.

Как добывают фторгидрид

Способы получения вещества не в лабораторных условиях, о которых мы уже упоминали, а в промышленности, практически нечем между собой не отличаются: реагентами являются все тот же плавиковый шпат (флюорит) и сульфатная кислота.

Минерал, залежи которого расположены в Приморье, Забайкалье, Мексике, США, сначала обогащают методом флотации, а затем используют в технологическом процессе получения HF, который осуществляют в специальных стальных печах. В них загружают руду и смешивают с сульфатной кислотой. Обогащенная руда содержит 55-60 % флюорита. Стенки печи выложены свинцовыми листами, улавливающими фтористый водород. Его очищают в промывочной колонне, охлаждают, а затем конденсируют. Чтобы получить водород фтористый, используют вращающиеся печи, косвенно обогревающиеся электричеством. Массовая доля HF на выходе составляет приблизительно 0,98, но процесс имеет свои недостатки. Он достаточно длительный и требует большого расхода сульфатной кислоты.

Получение

Фтор со взрывом взаимодействует с водородом даже при низких температурах и (в отличие от хлора) в темноте с образованием фтороводорода:

H2+F2→2HF{\displaystyle {\mathsf {H_{2}+F_{2}\rightarrow 2HF}}}

В промышленности фтороводород получают при взаимодействии плавикового шпата и сильных нелетучих кислот (например, серной):

CaF2+H2SO4→CaSO4+2HF{\displaystyle {\mathsf {CaF_{2}+H_{2}SO_{4}\rightarrow CaSO_{4}+2HF}}}

Процесс проводят в стальных печах при 120—300 °C, по сравнению с аналогичными реакциями получения других галогеноводородов, реакция получения фтороводорода из фторидов идет очень медленно. Части установки, служащие для поглощения фтороводорода, делаются из свинца.

Получение

Фтор со взрывом взаимодействует с водородом даже при низких температурах и (в отличие от хлора) в темноте с образованием фтороводорода:

H2+F2→2HF{\displaystyle {\mathsf {H_{2}+F_{2}\rightarrow 2HF}}}

В промышленности фтороводород получают при взаимодействии плавикового шпата и сильных нелетучих кислот (например, серной):

CaF2+H2SO4→CaSO4+2HF{\displaystyle {\mathsf {CaF_{2}+H_{2}SO_{4}\rightarrow CaSO_{4}+2HF}}}

Процесс проводят в стальных печах при 120—300 °C, по сравнению с аналогичными реакциями получения других галогеноводородов, реакция получения фтороводорода из фторидов идет очень медленно. Части установки, служащие для поглощения фтороводорода, делаются из свинца.

Свойства

Физические свойства

  • Критическая температура фтористого водорода 188 °C, критическое давление 64 атм.
  • Теплота испарения жидкого HF в точке кипения составляет лишь 7,5 кДж/моль (примерно в 6 раз меньше, чем у воды при 20 °C). Это обусловлено тем, что само по себе испарение мало меняет характер ассоциации фтористого водорода (димерная форма, характерная для жидкости, сохраняется и в парах — в отличие от фазового перехода воды).
  • Диэлектрическая проницаемость жидкого фтористого водорода (84 при 0 °C) очень близка к значению д.п. для воды.

Химические свойства

Химические свойства HF зависят от присутствия воды. Сухой фтористый водород не действует на большинство металлов и не реагирует с оксидами металлов. Однако если реакция начнется, то дальше она некоторое время идет с автокатализом, так как в результате взаимодействия количество воды увеличивается:

MgO+2HF→MgF2+H2O{\displaystyle {\mathsf {MgO+2HF\rightarrow MgF_{2}+H_{2}O}}}

Жидкий HF — сильный ионизирующий растворитель. Все электролиты, растворённые в нём, за исключением хлорной кислоты HClO4, являются основаниями:

HCl+2HF⇄H2Cl++HF2−{\displaystyle {\mathsf {HCl+2HF\rightleftarrows H_{2}Cl^{+}+HF_{2}^{-}}}}
В жидком фтороводороде кислотные свойства проявляют соединения, которые являются акцепторами фторид-ионов, например, BF3, SbF5:
BF3+2HF→H2F++BF4−{\displaystyle {\mathsf {BF_{3}+2HF\rightarrow H_{2}F^{+}+^{-}}}}
Амфотерными соединениями в среде жидкого фтороводорода являются, например, фториды алюминия и хрома(III):
3NaF+AlF3→3Na++AlF63−{\displaystyle {\mathsf {3NaF+AlF_{3}\rightarrow 3Na^{+}+^{3-}}}}
(AlF3 — как кислота)
AlF3+3BF3→Al3++3BF4−{\displaystyle {\mathsf {AlF_{3}+3BF_{3}\rightarrow Al^{3+}+3^{-}}}}
(AlF3 — как основание)

Фтороводород в газообразном состоянии и в виде водного раствора реагирует с диоксидом кремния:

При условии, если фтороводород в газообразном состоянии:
4HF+SiO2→SiF4+2H2O{\displaystyle {\mathsf {4HF+SiO_{2}\rightarrow SiF_{4}+2H_{2}O}}}
При условии, если фтороводород в виде водного раствора:
6HF+SiO2→H2SiF6+2H2O{\displaystyle {\mathsf {6HF+SiO_{2}\rightarrow H_{2}+2H_{2}O}}}

Фтороводород неограниченно растворяется в воде, при этом происходит ионизация молекул HF:

2HF+H2O⇄HF2−+H3O+{\displaystyle {\mathsf {2HF+H_{2}O\rightleftarrows HF_{2}^{-}+H_{3}O^{+}}}}
Kd= 7,2·10−4
HF+F−⇄HF2−{\displaystyle {\mathsf {HF+F^{-}\rightleftarrows HF_{2}^{-}}}}
Kd= 5,1
Водный раствор фтороводорода (плавиковая кислота) является кислотой средней силы. Соли плавиковой кислоты называются фторидами. Большинство их труднорастворимо в воде, хорошо растворяются лишь фториды NH4, Na, К, Ag(I), Sn(II), Ni(II) и Mn(II). Все соли плавиковой кислоты ядовиты.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий