Ipv4

Конфигурирование адресов IPv6

Существует два способа динамической конфигурации адресов IPv6 на хостах (в отличие от статической конфигурации, которую задает системный администратор).
Первый — это конфигурация с проверкой состояния, использующая, например, протокол DHCPV6 (он напоминает DHCP из мира IPv4). В действующей ныне версии только такая динамическая конфигурация и доступна.

Второй способ проверки состояния не предусматривает, поэтому здесь конфигурировать клиент не нужно. Конфигурируется только маршрутизатор, где установлен демон конфигурации без проверки состояния, например RADVD или Quagga. Работа первого из них будет рассмотрена и проиллюстрирована ниже, а вот Quagga, который также может посылать сообщения Router Advertisement и принимать Router Solicitations, рассматриваться в данной статье не будет из-за близкого сходства с RADVD.

Основы адресации IPv6

Существуют различные типы адресов IPv6: одноадресные (Unicast), групповые (Anycast) и многоадресные (Multicast).

Адреса типа Unicast хорошо всем известны. Пакет, посланный на такой адрес, достигает в точности интерфейса, который этому адресу соответствует.

Адреса типа Anycast синтаксически неотличимы от адресов Unicast, но они адресуют группу интерфейсов. Пакет, направленный такому адресу, попадёт в ближайший (согласно метрике маршрутизатора) интерфейс. Адреса Anycast могут использоваться только маршрутизаторами.

Адреса типа Multicast идентифицируют группу интерфейсов. Пакет, посланный на такой адрес, достигнет всех интерфейсов, привязанных к группе многоадресного вещания.

Широковещательные адреса IPv4 (обычно xxx.xxx.xxx.255) выражаются адресами многоадресного вещания IPv6. Крайние адреса подсети IPv6 (например, xxxx:xxxx:xxxx:xxxx:0:0:0:0 и xxxx:xxxx:xxxx:xxxx:ffff:ffff:ffff:ffff для подсети /64) являются полноправными адресами и могут использоваться наравне с остальными.

Группы цифр в адресе разделяются двоеточиями (например, fe80:0:0:0:200:f8ff:fe21:67cf). Незначащие старшие нули в группах могут быть опущены. Большое количество нулевых групп может быть пропущено с помощью двойного двоеточия (fe80::200:f8ff:fe21:67cf). Такой пропуск должен быть единственным в адресе.

Типы Unicast-адресов

Глобальные

Соответствуют публичным IPv4-адресам. Могут находиться в любом не занятом диапазоне. В настоящее время региональные интернет-регистраторы распределяют блок адресов 2000::/3 (с 2000:: по 3FFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF).

Link-Local

Соответствуют автосконфигурированным с помощью протокола APIPA IPv4 адресам. Начинаются с FE80:.
Используется:

  1. В качестве исходного адреса для Router Solicitation(RS) и Router Advertisement(RA) сообщений, для обнаружения маршрутизаторов.
  2. Для обнаружения соседей (эквивалент ARP для IPv4).
  3. Как next-hop-адрес для маршрутов.

Unique-Local

Типы Multicast-адресов

Адреса мультикаст бывают двух типов:

  • Назначенные (Assigned multicast) — специальные адреса, назначение которых предопределено. Это зарезервированные для определённых групп устройств мультикастовые адреса. Отправляемый на такой адрес пакет будет получен всеми устройствами, входящими в группу.
  • Запрошенные (Solicited multicast) — остальные адреса, которые устройства могут использовать для прикладных задач. Адрес этого типа автоматически появляется, когда на некотором интерфейсе появляется юникастовый адрес. Адрес формируется из сети FF02:0:0:0:0:1:FF00::/104, оставшиеся 24 бита — такие же, как у настроенного юникастового адреса.

[править] Дайте потыкать

Ваш провайдер не поддерживает IPv6?

В технической поддержке вас попросили не задавать глупые вопросы? Неудивительно. Удивительно было бы, если бы всё было иначе! Чуть менее чем никто из компаний, раздающих интернеты в дома к обычным пользователям, не заморачиваются такими глупостями.

Вам сильно повезет, если вы житель некоторых районов СВАО Нерезиновска, так как там имеется провайдер (спойлер: ) со слегка фанатичным админом, который раздает ipv6 в каждый дом (вин в том, что тамошний шейпер не режет скорость на ipv6).

Но прогресс не остановить, и вот уже в нерезиновой ростелеком (он же онлайм) в своей сети раздаёт всем желающим ipv6-адреса. Правда, чтобы оно у тебя заработало, нужна либо поддержка DHCPv6 (линуксы умеют, андроиды нет, венда ХЗ), либо достаточно продвинутый роутер, умеющий в DHCPv6 и prefix delegation.

Но вы хотите ощутить себя в будущем?

Tunnel Broker

6to4

Teredo

VPN

Также можно воспользоваться dual-stack VPN (по единому туннелю предоставляются как IPv4-, так и IPv6-адрес):

Ура! Мы — часть нового интернета! И что теперь?

Почему затягивается полный переход на IPv6?

Причина у этого банально проста: высокая стоимость. Чтобы обновить все серверы, маршрутизаторы и коммутаторы, которые всё это время работали лишь с IPv4, потребуется много времени и денег.

Также здесь нельзя не упомянуть и повсеместную практику провайдеров назначать пользователям динамический адрес, меняющийся при подключении к другой сети. В таком случае после отключения от интернета устройства освобождают адрес, в результате чего он становится доступен другим устройствам (по сути вы не владеете адресом, а лишь арендуете адрес).

Всё это в целом замедляет долгожданный и повсеместный переход с IPv4 на IPv6.
Но это не значит, что IPv6 плохо распространяется. Сегодня он применяется параллельно с IPv4. По данным Google, порядка 14 % его пользователей уже используют IPv6. А если верить заявлением американского провайдера Comcast, в 2018 году в США около половины пользователей уже перешли на IPv6.

Могут ли роутеры и компьютеры одновременно работать с IP и IPv6

IPv6 — это новая версия протокола IP. IPv6 сети, оборудование и программное обеспечение с поддержкой IPv6 распространены уже довольно широко — по крайней мере, в некоторых странах.

Сейчас, когда IP и IPv6 протоколы работают вместе, это приводит к существованию фактически двух параллельных сетей. Например, роутер моего Интернет-провайдера поддерживает IPv6 и IP. Если я обращаюсь к сайту, у которого есть IPv6 адрес (большинство сайтов), то мой запрос и ответ идёт по сетям (узлам) с поддержкой IPv6. Если я обращусь к сайту, у которого только IP адрес, то мой запрос и ответ на него может пойти по другому маршруту.

При анализе сети, допустим, с помощью Wireshark или tcpdump можно пропустить половину или даже больше трафика, если забыть про IPv6! То есть в качестве фильтра отображения пакетов в Wireshark вы введёте (обычный фильтр для показа трафика IP протокола):

ip

То вы увидите примерно такое:

Но если ввести такой фильтр

ipv6

То картина изменится кардинально (обращаю внимание, что это тот же самый трафик), окажется, что компьютер подключается ещё и к совершенно другим хостам:

При анализе сети, при настройке фильтров отображения по IP, при выполнении атак (например, ARP и DNS спуфинг в локальной сети), нужно помнить про IPv6!

Ещё раз: IP и IPv6 это две параллельные сети, которые не особо связаны друг с другом (хотя одно и то же оборудование может поддерживать работу с обоими протоколами). В результате при настройке сети, например, файервола, нужно отдельно сделать настройки для протокола IP, а затем делать такую же настройку IPv6. Поскольку это разные сети, есть шанс, что системный администратор настроил их по-разному, что даёт лазейки для выполнения атак или обхода ограничений с использованием IPv6. Реальный пример я описывал здесь (краткий пересказ: у отечественного VPS хостера ВНЕЗАПНО для клиентов сломался доступ к DNS серверам Google. При этом каждому VPS серверу прилагается 3 бесплатных IPv6 адреса. В дополнении к существующим записям DNS серверов, я добавил ещё парочку IPv6 адресов DNS Google в настройки и всё заработало! Видимо, при блокировке доступа, произошло именно это — администратор сети забыл (не посчитал нужным) позаботиться об IPv6 сети…)

IPv6 адреса могут пригодиться при исследовании локальных сетей Интернет-провайдеров, стоит попробовать использовать IPv6 для обхода Captive Portal (перехватывающих порталов) и других ограничений сети, про IPv6 нужно помнить при анализе трафика на своём компьютере и в локальных сетях, либо наоборот для увеличения скрытности своего пребывания (в надежде, что в настройках логирования трафика не упомянут IPv6 или что геолокация по IPv6 сейчас в зачаточном состоянии (по крайней мере, в публичных базах данных)).

Кстати про блокировки, насколько я понимаю (поправьте, если ошибаюсь), в реестре РКН ведь IPv6 отсутствуют вовсе?..

Эта статья поможет вам сделать первые шаги по использованию IPv6 адресов с популярными программами.

Адресация IPv4

Каждому узлу IPv4-сети, например компьютеру, маршрутизатору или интернет-принтеру, присваивается IPv4-адрес, который используется для идентификации этого узла при взаимодействии с другими узлами в той же сети. В принципе, любой компьютер с публичным IPv4-адресом может отправлять данные любому другому компьютеру с IPv4-адресом. Однако IPv6 не имеет обратной совместимости с IPv4, поэтому отправить данные от компьютера только с IPv4 адресом к компьютеру с только IPv6-адресом можно, лишь используя специальные технологии. Стандартным решением является туннелирование.
IPv4-адрес имеет длину 4 байта (32 бита), и поэтому протокол Интернета версии 4 позволяет использовать 232 (примерно 4,3 миллиарда) адресов. Однако некоторые большие блоки IPv4-адресов зарезервированы для специальных нужд и недоступны для публичного использования, например адрес «обратной петли» 127/8, «серые» сети 10/8, 172.16/12, 192.168/16 (это специально ).

Структура адреса IPv4 позволяет использовать публично доступные адреса в количестве, недостаточном для того, чтобы обеспечить адрес для каждого связанного с Интернетом устройства или услуги. Эта проблема была частично решена на некоторое время при помощи изменений в системе распределения адресов. Переход от классовой адресации к бесклассовой позволил существенно отсрочить исчерпание адресного пространства IPv4.

Также технология NAT (англ. Network Address Translation) позволяет интернет-провайдерам маскировать собственные частные сети за одним публично доступным IPv4-адресом маршрутизатора вместо того, чтобы выделять публичные адреса каждому устройству в сети.

Формат заголовка IPv6

Давайте рассмотрим формат заголовка протокола IPv6. Основное изменение это более длинные адреса отправителя и получателя, каждая из которых занимают по 16 байт.

  • Первое поле в заголовке протокола IPv6 также, как и в заголовке протокола IPv4, это номер версии 4 для IPv4 и 6 для IPv6.
  • Затем идет поле класс трафика, оно необходимо для реализации качества обслуживания. Самый простой вариант, разбиение трафика на два класса, обычный и важный. Маршрутизаторы, которые поддерживают обеспечение качества обслуживания, передают важный трафик быстрее используя специальную выделенную очередь, также возможны и другие варианты использования классов трафиков.
  • Следующее поле в заголовке IPv6 это метка потока, это поле используется для того чтобы объединить преимущества сетей коммутации пакетов с сетями с коммутацией каналов. У набора пакетов, которые передаются от одного отправителя к одному получателю, и требует определенного типа обслуживания, устанавливается одна и та же метка. Маршрутизаторы, которые поддерживают работу в таком режиме, обрабатывают пакет на основе метки, что гораздо быстрее.
  • Следующее поле это длина полезной нагрузки, в отличии от протокола IPv4, где в подобном поле указывается общая длина пакета, здесь указывается только размер данных без размера заголовка.
  • Затем идет поле следующий заголовок, которое необходимо, если используются дополнительные заголовки, в этом поле указывается тип первого дополнительного заголовка.
  • В IPv6 поле время жизни пакета переименовали в максимальное число транзитных участков, потому что на практике вместо времени жизни, даже в протоколе IPv4, указывается максимальное количество маршрутизаторов через которое может пройти пакет, перед тем как он будет отброшен.

По сравнению с заголовком протокола IPv4 в протоколе IPv6 нет полей, которые отвечают за фрагментацию, и за контрольную сумму. Расчет контрольной суммы создает большую нагрузку на маршрутизаторы, однако эта операция часто является излишней, так как контрольная сумма рассчитывается на канальном уровне, и на сетевом уровне. Поэтому от расчета контрольных сумм в протоколе IPv6, было решено отказаться.

Также было принято решение отказаться от фрагментации, потому что она так же как и расчет контрольной суммы, создает большую нагрузку на маршрутизаторы. На практике во многих сетях сейчас используется один и тот же размер пакета, соответствующий размеру кадра Ethernet 1500 байт, поэтому фрагментация часто являются ненужной. Если все же где-то по пути пакета встретиться сеть с меньшим максимальным размером пакета, то вместо фрагментации необходимо использовать технологию Path MTU Discovery.

Также как и заголовок протокола IPv4,  заголовок протокола IPv6 состоит из двух частей обязательный и необязательной. В необязательные части может быть несколько дополнительных заголовков.

Дополнительные заголовки IPv6

В IPv6 могут быть дополнительные заголовки следующих типов:

  1. Заголовок параметры маршрутизации —  содержит данные, которые необходимы маршрутизаторам для того, чтобы корректно обрабатывать пакеты.
  2. Заголовок параметры получателя —  содержит данные, которые необходимы для обработки пакета на стороне получателя.
  3. Дополнительный заголовок маршрутизация — содержит список маршрутизаторов, через который пакет должен обязательно пройти.

В протоколе IPv6 фрагментация преимущественно не используется, вместо неё используется технология Path MTU Discovery, но как вариант все-таки маршрутизаторы могут фрагментировать пакеты, для этого используется не обязательная часть заголовка.

Важным добавлением в протокол IPv6 является механизм защиты данных, которых не было в IPv4 это аутентификация и шифрование. Обе технологии не являются частью протокола IPv6, а описаны в отдельных документах. RFC 2402 IP Authentication Header используется для аутентификации, а документ RFC 2406 описывает технологию шифрования IP Encapsulation Security Payload, сейчас активными являются обновленные версии этих документов.

Два шага к автоконфигурации IPv6

Автоконфигурированные Состояния Адресов

Адреса Autoconfigured находятся в одном или нескольких из следующих состояний

  • Ориентировочный адрес в процессе проверки на уникальность. Проверка выполняется путем обнаружения дубликатов адресов. Узел не может получать одноадресный трафик на предварительный адрес. Это может, однако, получить и обработать сообщения объявления Многоадресного соседа, отправленные в ответ на сообщение запроса соседа, которое было отправлено во время обнаружения дублирующего адреса.
  • Действительный адрес может быть использован для отправки и приема одноадресного трафика. Допустимое состояние включает предпочтительное и устаревшее состояния. Сумма времени, в течение которого адрес остается в предварительном, предпочтительном и устаревшем состояниях, определяется полем допустимое время жизни в опции Префикс Information Сообщения объявления маршрутизатора или поле допустимое время жизни опции адреса DHCPV6 IA (Identity Association).
  • Выбранный адрес является действительным, его уникальность была проверена, и он может быть использован для неограниченного общения. Узел может отправлять и получать одноадресный трафик с предпочтительного адреса. Период времени, в течение которого адрес может оставаться в предварительном и предпочтительном состояниях, определяется предпочтительным полем времени жизни в опции информации о Префиксе Сообщения объявления маршрутизатора или предпочтительным полем времени жизни опции адреса IA DHCPv6.
  • Устаревший адрес является действительным, и его уникальность была проверена, но ее использование не рекомендуется для новых коммуникаций. Существующие сеансы связи могут по-прежнему использовать устаревший адрес. Узел может отправлять и получать одноадресный трафик на устаревший адрес и с него.
  • Неверный адрес не может быть использован для отправки и приема одноадресного трафика. Адрес переходит в недопустимое состояние после истечения срока действия.

Предпосылки к IPv6

Основной протокол, по которому в Интернете передадаются данные, называется IP (Internet Protocol). Всякие HTTP, ICQ и сервисы работают поверх него (с TCP или UDP в промежутке). IP умеет упаковывать данные в пакеты и передавать их между компьютерами. Понятно, желающим обменяться данными нужно как-то друг друга идентифицировать. Для этой цели используются IP-адреса.

А вот с адресами и начинаются проблемы. IP был придуман в 80-х годах XX века, когда никто и не предполагал, что доступ в Интернет через какие-то пятнадцать лет будет не то, что у каждой уважающей себя фирмы, а вовсе у каждого школьника. Поэтому адреса сделали длиной в четыре байта (от 0.0.0.0 до 255.255.255.255). Их 2^32 = 4294967296, казалось, что хватит всем. Прямо как 640 килобайт.

Но это еще не самый большой просчет. На ранних этапах развития сети адреса можно было получать не сколько тебе реально надо, а только блоками по 16777216, 65536 или 256 адресов. Если тебе надо 500 адресов, бери сразу 65536. Если надо 66000, бери 16 миллионов. Явно не самый эффективный расход адресного пространства.

Есть и еще один прикол: сеть 224.0.0.0/4 (268435456 адресов) выделили для многоадресной рассылки (через нее, в частности, работает IPTV), а адреса после нее зарезервировали для использования в будущем. Многие разработчики сетевого оборудования поставили аппаратный фильтр на эти зарезервированные адреса, и теперь если разрешить их использование, часть исторической инфраструктуры не сможет с ними работать.

Но до какого-то момента это все не имело значения, поскольку Интернет был только у военных и в университетах.

Когда число пользователей сети начало стремительно возрастать, стало ясно, что адресов не так уж и много. В первую очередь отказались от дурацкой классовой адресации (той самой выдачи блоками фиксированного размера) и сделали возможным выдавать адреса в минимально нужном количестве.
Потом и это перестало помогать, тогда подумали, что во имя спасения сети можно отказаться от уникальности адреса каждой машины и выдавать по одному уникальному адресу на сеть, чтобы все машины сети ходили в Интернет через него. Так появился NAT (Network Address Translation), который подменяет адрес источника у соединений вовне сети на адрес маршрутизатора. Для сетей за такими маршрутизаторами выделили всем теперь известные сети 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.

Но это все временные меры, которые только помогли бы продержаться до внедрения нового протокола с большим адресным пространством.

IPv6 более/менее безопасен, чем IPv4

Есть два больших заблуждения относительно безопасности:

  • IPv6 более безопасен, чем IPv4;
  • IPv6 менее безопасен, чем IPv4.

Ни то, ни другое не соответствует действительности. Оба варианта предполагают, что сравнение безопасности IPv6 и IPv4 имеет смысл. На самом деле это не так.

Современные сети, независимо от того, есть ли в них IPv6 или нет, в значительной степени совместимы с этим протоколом. Все современные операционные системы и сетевые устройства используют IPv6 Dual-Stack, в которых IPv6 включён по умолчанию. Даже если вы не развернули IPv6, ваши сети всё ещё имеют уязвимости и IPv4, и IPv6.

Поэтому сравнивать безопасность этих двух протоколов не имеет смысла. Они оба имеют уязвимости. Каждая сеть должна быть защищена для IPv4 и IPv6. В идеале, это нужно было сделать более десяти лет назад.

IPv4 и IPv6 Сравнение

Ниже описаны различия между IPv6 и IPv4:

Характеристики IPv4 IPv6
Длина битового адреса 32-разрядный 128-битный
Конфигурация адреса Поддержка ручной настройки адреса DHCP и адреса DHCP Поддержка автоматической настройки и перенумерации адресов
Возможность сквозной целостности соединения Недостижимый Достижимый
Представление адреса В десятичной дроби шестнадцатеричный
Поле контрольной суммы В наличии Недоступно
Шифрование и аутентификация Не предусмотрено При условии

IPv4

Кроме того, новейшая версия протокола IPv6 предлагает больше возможностей. Это упрощает настройку адресов, нумерацию сетей и анонсирование маршрутизаторов. Он также упрощает обработку пакетов в маршрутизаторах, размещая ответственность за фрагментацию пакетов на конечных точках. Он может работать с пакетами более эффективно, улучшает производительность и повышает безопасность. Кроме того, это позволяет интернет-провайдерам сократить размер таблиц маршрутизации, сделав их более иерархичными.

В связи с этим быстрый рост мобильных устройств, включая мобильные телефоны, компьютеры и беспроводные устройства, создал потребность в дополнительных блоках IP-адресов, поэтому IPv6 действительно очень полезен во многих отношениях. Ключевым усовершенствованием по сравнению с IPv4 является встроенная поддержка мобильных устройств. IPv6 поддерживает мобильный протокол IPv6, который позволяет различным мобильным устройствам переключаться между различными сетями и получать уведомления о роуминге независимо от их физического местоположения. Протокол IPv6 действительно улучшает IPv4, повышая меры аутентификации и конфиденциальности. Таким образом, IPv6 действительно может обеспечить эффективную структуру безопасности для передачи данных на уровне хоста или сети. Внедрение новейшего протокола IPv6 действительно расширяется во всем мире. Полная замена старого IPv4 займет некоторое время, поскольку он по-прежнему остается самой распространенной и широко используемой версией Интернет-протокола.

Как настроить мобильный интернет на Билайн на телефоне или планшете?

На мобильных устройствах  интернет настраивается как с помощью автоматических настроек, так и вручную, в зависимости от модели этих устройств. Для современных планшетов и телефонов можно получить автоматические настройки заказав их с сайта Билайн через компьютер или позвонив на специальный номер.

Перед тем как настраивать свой телефон убедитесь, что у вас подключена услуга «Пакет трех услуг», для этого позвоните по номеру 067409 – список подключенных услуг будет доставлен в виде SMS. При необходимости подключите доступ в интернет отправив USSD-запрос: *110*181# .

Автоматическая настройка интернета на телефоне

Автоматические настройки можно получить на телефон с официального сайта Билайн: Зайдите на страницу «Настройка телефона», в появившемся поле нужно ввести название и модель своего устройства, выбрать пункт «Мобильный интернет» и узнать, предполагаются ли для него автоматические настройки. Если настройки есть, то необходимо указать свой номер, на который они будут высланы.

Если компьютера нет рядом, автоматические настройки можно заказать через голосовое меню. Позвоните по номеру 0611 и следуйте подсказкам.

Еще один способ – запросить автоматические настройки по специальному номеру 0117.

После того как настройки придут нужно сохранить их в телефоне и перезагрузить его.

Ручная настройка мобильного интернета

Те пункты настроек, которые не указаны в таблице вам заполнять и менять не нужно – оставьте значения в этих полях такими какие есть по умолчанию.

Имя Beeline Internet
APN internet.beeline.ru
Логин beeline
Пароль beeline
Тип сети IPv4
Тип аутентификации PAP
Тип APN default

На телефонах и планшетах с разными операционными системами настройки почти не отличаются, но найти их бывает достаточно сложно.

Android

В телефоне нужно найти раздел Настройки и следовать подсказкам: Другие сети → Мобильные сети → поставить чекбокс на Мобильные данные → перейти в раздел Точки доступа → нажмите кнопку Добавить (+) и введите настройки указанные выше в таблице → Сохраните результат. После сохранения вернитесь в раздел Точки доступа в интернет и выберите только что созданный профиль.

Для наглядности можете посмотреть скриншоты с настройками или видео в конце статьи.

Видеоинструкция

Если вы являетесь юзером планшетного компьютера, либо же телефона под управлением «ОСи» Android, и вы столкнулись с проблемной работой мобильного интернета, избавиться от имеющихся неприятностей можно посредством выполнения процедуры настройки в ручном режиме. Не спешите расстраиваться, так как сделать это достаточно просто, и, используя предложенную нами инструкцию, вы всего за пару минут сможете корректно настроить свой девайс и приступить к его использованию. Сама инструкция выглядит следующим образом:

  1. Запустите раздел настроек на имеющемся гаджете, и переместитесь в нем в меню «Еще».
  2. Откройте пункт «Мобильная связь», где установите галочку возле меню передачи данных.
  3. Откройте подкаталог «Точки доступа» и нажмите на кнопку для создания новой точки.
  4. Укажите параметры настроек в следующем порядке:
  • Введите любое имя для новой точки доступа. Впрочем, мы рекомендуем указать именно параметр Beeline Internet;
  • Заполните адрес internet.beeline.ru в поле «АПН» точки;
  • Пропустите следующие два пункта, оставив их поля пустыми. Мы говорим про «Прокси» и «Порт»;
  • В качестве имени и пароля юзера укажите одинаковый параметр beeline</strong>;
  • Пропустите все остальные пункты, которые идут до графы «Тип аутентификации», где необходимо выбрать PAP</strong>;
  • В качестве типа «АПН» точки укажите протокол версии IPv</strong>;
  1. Сохраните все внесенные изменения, после чего отправьте смартфон или планшет в «ребут» (перезагрузите девайс).

Windows Phone

В телефоне открывайте последовательно следующие разделы: Настройки → Персональная конфигурация → Добавление новой → Интернет → заполните все строки и сохраните результат.

Откройте раздел Настройки → выберите Конфигурация → Стандартные параметры конфигурации → Персональная конфигурация → Функции → укажите Как стандартный.

Выводы

Помимо выше перечисленного протоколы ipv4 и ipv6 имеют и другие отличия. Например, протокол IPv6 поддерживает улучшенную многопоточную передачу, зато здесь не поддерживаются широковещательные пакеты. IPv6 построен на основе IPv4 с учетом всех его ошибок и недоработок. Но эти протоколы несовместимы друг с другом, поэтому все устройства должны поддерживать ipv4 и ipv6, пока весь интернет полностью не перейдет на последний.

Если вы задаетесь вопросом что лучше IPv6 или IPv4, то ответ предельно ясен. Но несмотря на то, что IPv6 существует уже больше 10-ти лет, его развертывание так и не набрало оборотов, даже учитывая то, что адресное пространство заканчивается. Возможно, это связанно с улучшением IPv4, появлением технологий NAT и CIDR. Но IPv6 медленно продвигается к замене IPv4.

Итоги

Мы рассмотрели формат адресов IPv6. В отличии от адресов IPv4, длина адреса IPv6 16 байт. Адреса очень длинные, поэтому они записываются в виде 8 шестнадцатеричных чисел разделенных двоеточиями, каждое число состоит из 4 цифр.

Есть три типа адресов IPv6: индивидуальный, групповой были в IPv4, произвольный новый тип адресов IPv6. Кроме этого IPv6 не использует широковещательные адреса, которые были в IPv4. Также адреса IPv6 различаются по областям действия:

  • глобальный, который используется в интернет;
  • локальный, который используется внутри сети одной или нескольких организаций, но не используется в интернет, это аналог частных адресов IPv4;
  • локальный адрес канала связи.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий