Выполняем замер сопротивления изоляции электропроводки своими руками

Грозы

Причины возникновения утечек тока в сети

Вот несколько основных причин в новой электрической проводке:

  • пониженное сопротивление изоляции проводов и кабелей (плохое качество изоляции, заводской брак);
  • повреждение изоляции при креплении кабеля (провода);
  • повреждение изоляции во время отделочных работ.

Заводской брак не является чем-то фантастическими и из ряда вон выходящим, особенно в нашей стране.

Повреждение изоляции при креплении электрического провода и кабеля — самая распространенная причина. Как правило изоляция повреждается шляпкой гвоздя или самореза, а также кромками металлических крепежных скоб при укладке и натяжке провода. Протяжка кабелей и проводов через трубы и каналы иногда сопровождаться повреждением изоляции. Что будет дальше, зависит от того, как ляжет и с чем соприкоснется поврежденный кабель (провод).

Нарушение материала изоляции во время отделочных работ вообще может стать полной неожиданностью. Особенно, если перед оштукатуриванием сопротивление изоляции было в норме. Это может быть: повреждение всевозможными гладилками, терками и полутерками; металлической штукатурной сеткой; повреждение при дополнительном приглаживании торчащего кабеля.

Как пользоваться мегаомметром (видео)

Пользоваться мегаомметром очень удобно для прозвонки различных двигателей или измерения напряжения. Можно сделать самодельный агрегат и использовать его для работы. Но все же будет лучше, если ремонт и непосредственно процесс замера, вы доверите специалистам.

Качество изоляционных конструкций, работающих в неблагоприятных условиях, в значительной мере определяется степенью надежности электрооборудования. Используемая изоляция подвергается множественным воздействиям, таким как нагрев, механическое воздействие, действие окружающей среды и т.д.

Таким образом, под влиянием таких факторов происходят изменения свойств диэлектриков, а соответственно и изменения технических характеристик изоляционных конструкций. Такие перемены бывают обратимые и необратимые. Во втором случае, благодаря длительной эксплуатации электроустановок, изменяются физические свойства и химическая структура материалов. Процесс изменения во времени называют старением, ухудшение свойств — износом.

Как правило, измерение сопротивления изоляции электрооборудования происходит относительно других проводов заземленных. При неудовлетворительном результате производятся замеры сопротивлений изоляций относительно земли каждого из проводов, при этом другие провода не заземлены.

Для трехпроводной линии выполняют шесть замеров сопротивления, для четырех проводных — четыре и десять, для пяти проводных — пять и пятнадцать. При сопротивлении изоляции меньше 1 мОм, проводятся испытания с переменным током 1 kV напряжения промышленной частоты.

В процессе изготовления и во время транспортировки на электропроводку постоянно воздействуют различные механические, химические и температурные факторы. Следовательно, наступает преждевременное старение. К сожалению, нарушая технологию, гарантия качества изоляции проводников, можно определить после замера изоляционного сопротивления.

Порой потребление электроэнергии превышает допустимые нормы технических характеристик электропроводки, и проводники перегреваются, в результате чего возникает преждевременное старение и износ. Как последствие, может возникнуть короткое замыкание и пожар.

Таким образом, систематическое измерение изоляционного сопротивления — гарантия избежать утечки электроэнергии, возгорания или поражения электротоком.

Замер изоляционного сопротивления проводится так:

  1. Визуальный осмотр (на предмет внешних повреждений);
  2. Непосредственно определение сопротивление изоляции мегомметром (строго проводится при обесточенном электрооборудовании);
  3. В процессе участвуют: проводники фазные, фазные и нулевые рабочие проводники, фазные и нулевые защитные проводники, проводники нулевые защитный и рабочий. Соответственно число проводов в линии определяет количество измерений, при этом минимальное изоляционное сопротивление составляет 0,5 мОм. При более низком сопротивлении изоляции, линия кабеля делится на отрезки и определяется отдельно.

Измерение сопротивления изоляции электродвигателя. Замеры, определяющие степени изоляционного сопротивления рекомендуется производить при монтажных работах, при пуско-наладке, для профилактики, а также целях определения степени изношенности.

Накануне проведения испытания нужна проверка:

  1. Паспорта двигателя, соответствия сервисного обслуживания;
  2. Укомплектованности двигателя;
  3. Степени целостности изоляции, видимых соединений участков обмотки и отводов (качества крепежей и распорок фронтальных участков обмотки) электрического оборудования;
  4. Состояния колец контакта и щеток двигателя с ротором фазным;
  5. Корпусного заземления двигателя.

Иначе говоря, нужно тщательно электродвигатель (оборудование) и визуально оценить изоляционное состояние на предмет необходимости просушивания обмотки двигателя. Измерение сопротивления изоляции проводится при помощи повышенного напряжения тока переменного.

В случае с низким изоляционным сопротивлением все замеры проводятся после просушивания. Все рабочие показатели указываются в сопроводительной технической документации производителя. Данные, полученные при такой процедуре, фиксируются в актах о проведении испытания и должны быть подписаны руководителем технической службы или главным инженером.

Подготовительный этап

Для того чтобы корректно измерить сопротивление изоляции, требуется правильно подготовить проверяемую электрическую установку. Все потребители должны быть отключены, все соединения разомкнуты, концы проводов отсоединены от аппаратуры. Если будут проводиться испытания системы освещения, недостаточно просто отключить выключатели – обязательно нужно удалить все осветительные приборы (выкрутить лампочки). Если есть возможность, лучше всего на время испытаний совсем отключить проводку от осветительной арматуры.

Если планируется проверять кабельную линию, подготовку следует начать с «дальнего» конца: отсоединить все аппараты, разомкнуть автоматы защиты и выключатели (рубильники), убедиться в том, что концы проверяемого кабеля свободны.

После этого следует ограничить доступ к «дальнему» концу линии. Это нужно для того, чтобы:

  • никто не был случайно травмирован высоким испытательным напряжением;
  • не было возможности по ошибке подать напряжение на кабель, пока проводятся измерения.

Для этого либо выставляется пост (помощник), либо помещение запирается, вывешиваются предупреждающие таблички.

В процессе измерений обязательно потребуется переносное заземление. Его можно организовать, проведя к месту замеров от клеммы защитного заземления электрощита гибкий медный провод сечением не менее 2 кв. мм. Второй конец провода подключается к заземляющей штанге. Если нет готовой штанги, её можно сделать из куска изолятора подходящей длины. Подойдёт сухая деревянная палка. Можно использовать кусок полипропиленовой трубы. Главное, чтобы с её помощью можно было поднести заземляющий провод к испытываемому проводнику с безопасного расстояния (примерно 1,5 метра).

Мегаомметр должен быть заведомо исправен. Проверка мегаомметров производится в специализированной метрологической мастерской. При этом проводится поверка измерительной системы и проверка исправности изоляции клемм.

Не следует путать термины «поверка» и «проверка»:

  • в ходе «проверки» убеждаются в общей целостности и исправности аппарата;
  • при «поверке» специалист-метролог выясняет, измеряет ли прибор необходимый параметр с должной точностью.

Проверяется также исправность изоляции измерительных проводов. На проверенный и поверенный приборы метролог накладывает контрольную пломбу и вносит соответствующую запись в журнал.

Обязательно надо убедиться в наличии необходимых средств индивидуальной защиты. Все участвующие в измерениях должны иметь необходимый допуск (III группа электробезопасности) и пройти медицинский осмотр.

Отличие мегаомметра от мультиметра

Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита. Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине. Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к
  • гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Особенности устройства

Устройство мегаомметра стандартного типа представлено генератором, переключателем, выставляемым на необходимые пределы измерения, измерительной головкой, токоограничивающими резисторами.

Перечисленные детали правильно удерживаются в прочном диэлектрическом корпусе, оснащенном ручкой для удобства перемещения, генераторной рукояткой складывающегося типа. Для начала выработки напряжения она изначально раскладывается и раскручивается. Корпус оснащен тумблером с клеммами выходного типа, к ним и подводятся соединительные провода. Выделяется три выхода со значением на экран (Э), линию (Л), землю (З):

  • Что касается клемм на электронном мегаомметре с обозначением «Л «и «З», они задействуются в ходе работы всегда при необходимости замера изоляционного сопротивления относительно контура земли.
  • Вывод «Э» предназначается для нейтрализации действия токов утечки во время проведения измерения между параллельными жилами, аналогичными им токоведущими частями. Данная клемма функционирует в паре с измерительным устройством с экранированными концами, соединяется с экраном или кожухом. Она помогает выполнить самые точные замеры.

Если рассматривать специфику работы изделий с внешними и внутренними источниками, они практически ничем не отличаются от конструкций, оснащенных ручкой. Выдача напряжения на схему запускается нажатием соответствующей кнопки с последующим ее удерживанием. Некоторые модели устройств способны одновременно подавать различные комбинации напряжения, для чего нужно одновременно работать с несколькими пусками.

Обзор мультиметра DT-832Обзор мультиметра DT-832

Мегаомметры различны по описанию, выходной мощности. С помощью одних устройств диагностируется изоляция на высоковольтном оборудовании. Другие приборы уместны для работы (проверить изоляцию) только с бытовой проводкой. Соответственно, такие изделия отличаются по размерам, общим масштабам.

Работа с мегаомметром

Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.

Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.

На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока. ¶

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока. ¶

Испытательное напряжение, кВ

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

Реостат и пускорегулировочный резистор

Резистор гашения поля синхронного электродвигателя

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

Синхронная частота вращения электродвигателя, Гц

Допустимая вибрация, мкм

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей. ¶

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий