Монокристаллы — это… понятие, свойства и примеры монокристаллов

Поликристаллические солнечные батареи

Существует два вида фотоэлемнтов из кремния – монокристаллические и поликристаллические. Монокристаллическая батарея в качестве рабочих элементов использует монокристаллы кремния. Для выращивания монокристалла требуются гораздо большие затраты, чем для получения поликристаллического материала. Это цельный кристалл кремния прямоугольной формы, который “режется” на тонкие полоски толщиной 0,2-0,4 мм. Для производства поликристаллических батарей используется кремний сравнительно невысокой степени очистки от примесей. Сам же процесс получения поликристаллического материала осуществляется при охлаждении расплава кремния и не связан с выращиванием цельного кристалла. Если сравнить процессы получения монокристаллического и поликристаллического кремния, то второй значительно дешевле.

Несмотря на то, что качество солнечных батарей (их КПД), произведенных по монокристаллической технологии, несколько выше, чем у батарей поликристаллического состава, низкая стоимость последних оказывается решающим фактором в пользу более широкого их практического использования.

Устройство поликристаллической солнечной батареи

Этот принцип сохранился и в современных солнечных технологиях, хотя батареи существуют и служат человеку уже много лет. Изменялись лишь материалы и конструкции, которые используются в производстве готовых изделий. Благодаря этим изменениям постепенно увеличивается коэффициент фотоэлектрического преобразования батарей или коэффициент полезного действия.

Главным неудобством пользователей солнечных батарей является зависимость их производительности от внешней освещённости. Для того, чтобы пользоваться солнечной электроэнергией ночью, нужно суметь заранее запастись ей днём. Здесь уже мы сталкиваемся с другой технической проблемой – изготовлением аккумуляторов большой емкости.

Применение поликристаллических солнечных батарей

Спектр применения поликристаллических солнечных батарей в наше время настолько широк, что невозможно не только перечислить все конкретные моменты, но даже систематизировать такую информацию. По сравнению с монокристаллическими они набрали большую популярность в виду их дешевизны. Думаю, достаточно будет сказать, что солнечные батареи применяются почти во всех важнейших технология современного мира. От космических аппаратов до тепловых панелей крыш домов, от фотоаппаратов до сварочных щитков, от часов и детских игрушек до элементов электротехнической автоматики.

Производство солнечных панелей

Поликристаллические солнечные батареи производятся во многих странах мира. Лидеры производства поликристаллических солнечных батарей – Китай, Германия и США.

К отечественным производителям относятся научно-производственное предприятие «Хевел», «Квант», а также предприятия в Краснодаре и Зеленограде, в Москве и Рязани. Такие производства считаются высокотехнологичными, востребованность их продукции на мировом рынке достаточно велика.

Цены на поликристаллические панели

Цены на поликристаллические солнечные батареи меняются вместе с курсом мировых валют. Приведём ориентировочные цены на данный момент:

  • Модуль на основе поликристаллов ФСМ-30П мощностью 30 Вт – 1750 рублей.
  • Автономная система мощностью 35 Вт для освещения и зарядки сотового телефона -13 000 рублей
  • Система, аналогичная предыдущей, но мощностью 250 Вт – 31 000 рублей

Солнечная электроэнергия является экологически чистой, так как при её получении не наносится никакого вреда природе. Доля электроэнергии, получаемой солнечным путём, постепенно увеличивается. И здесь всё большую роль играют поликристаллические солнечные батареи.

Полиморфизм

Монокристаллы — это вещества, способные существовать сразу в двух состояниях, которые будут отличаться по своим физическим свойствам. Такая особенность получила название полиморфизм.

При этом вещество в одном состоянии может быть стабильнее, чем другая. При изменении условий окружающей среды ситуация может измениться.

Полиморфизм бывает следующих типов:

  1. Реконструкционный — распад происходит до атомов и молекул.
  2. Деформационный — структура видоизменяется. Происходит сжатие или растяжение.
  3. Сдвиговый — некоторые элементы структуры изменяют свое местоположение.

Свойства кристалла могут измениться при резком изменении состава. Классическим примером полиморфизма является модификация углерода. В одном состоянии это алмаз, в другом — графит, вещества с различными свойствами.

Некоторые формы углевода при нагревании превращаются в графит. Изменения свойств могут происходить без деформации кристаллической решетки. В случае с железом замещение некоторых компонентов приводит исчезанию магнитных свойств.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД. Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно

Сравнение монокристаллических и

Итак, какая солнечная батарея лучше — монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?

На фото ниже представлены два основных типа:

Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие — это эффективность преобразования солнечной энергии.Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие — это цена солнечной батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

Внешний вид. Эффективность. Цена.

Как видно из этого перечня, для солнечной электростанции не имеет ни какого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:

1. поликристаллические — 52,9%

2. монокристаллические — 33,2%

3. аморфные и пр. — 13,9%

Т. е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД.  Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно использовать при выездах на пикник, от нее может работать радио и заряжаться мобильные телефоны и ноутбуки. Расположить батарею можно на крыше автомобиля, а перевозить в багажнике, аккуратно закрепив и обезопасив от повреждений.

Солнечные батареи и контроллеры заряда для дома. Общие сведенияСолнечные батареи и контроллеры заряда для дома. Общие сведения

Виды

Перед осуществлением покупки необходимо ознакомиться с типами солнечных батарей, которые предлагают современные компании. От их выбора зависят работоспособность, долговечность, мощность и цена устройства. Разница заключается в материале, из которых изготавливаются фотоэлементы системы. Выделяют несколько вариантов.

Самый бюджетный вид, предназначенный для питания энергией малогабаритной техники.

Из поликристаллического кремния

Отличается невысокой ценой в отличие от батарей с фотопреобразователями из монокристаллического кремния, однако, менее эффективен в процессе получения и обработки солнечной энергии. Данный вариант рассчитан на приобретение частными лицами для энергоснабжения током небольших участков.

Из монокристаллического кремния

Самая дорогая модель, которая отличается высокой производительностью. Такие батареи, как правило, имеют компактный размер, но вместе с тем характеризуются высокой мощностью выработки электроэнергии. Главное преимущество также заключается и в высоком качестве – фотоэлементы крайне устойчивы к влаге и другим неблагоприятным условиям.

Приобретение солнечной батареи должно ориентировать не столько на бюджет, сколько на необходимость обеспечить бесперебойной подачей тока отдельную технику, помещение или предприятие. Чем качественнее выполнены фотоэлементы, тем лучше будет результат работы и долговечнее изделие. В случае если выбор стоит между приобретением панелей из монокристалла или поликристалла, лучше всего выбрать первый вариант.

Типы солнечных панелей, что такое моно и поликристалл

Типы солнечных батарей:

  • кремниевые — из кристаллов Si, твердые с определенной хрупкостью плитки. Стандарт, традиционные изделия. Наиболее эффективное, а возможно, единственное высоко результативное решение, если требуется основательная система в классическом ее понимании с хорошей отдачей, окупаемостью. Чаще всего их подразумевают, используя термин «солнечные панели»;
  • пленочные — КПД в 3 раза ниже, чем у кремниевых, это эластичная пленка, которую можно наклеивать. Основное преимущество в легкости использования, монтажа, возможности модификации форм. Пленочные солнечные батареи — это инновация, изделие имеет потенциал для совершенствования, но на данное время для серьезной системы их сложно рассматривать. Эластичные фотоэлектрические элементы дороже кремниевых, не окупятся за свой срок эксплуатации, который намного меньший (10–12 лет против 15–20 лет);
  • арсенид-галиевые, из аморфного кремния — особо продвинутые технологии, самые производительные батареи, но чрезвычайно дорогие, на рынке встречаются редко, это не массовая продукция.

Кремниевые фотогальванические батареи разделяются на монокристаллические, поликристаллические. Плитки панелей создаются формированием массы вокруг затравки из Si — именно в этом процессе и есть различия для указанных двух вариантов. Финишные этапы одинаковые — делают p-, n-переходы, устанавливают электроконтакты, токоведущие линии, наносят антиотражающий слой.

Монокристаллические солнечные батареи

За последние годы, в соответствии с данными EPIA (European Photovoltaic Industry Association – союз производителей устройств для выработки энергии фотоэлементами) в общем числе произведенных солнечных батарей 52,9% – поликристаллические, 33,2% – монокристаллические, остальные – либо аморфные, либо с иным типом кремниевых элементов. Таким образом, по объему производства пока доминируют солнечные батареи на поликристаллах. Хорошо ли это, и столь уж необходимо ратовать за более быстрые темпы внедрения именно монокристаллических панелей?

Чтобы ответить на этот вопрос, рассмотрим конструктивные особенности последних.

Материалы, функционирование и показатели эффективности

Монокристаллические солнечные батареи представляют собой панель, собранную из нескольких отдельных силиконовых фотомодулей (обычно их не меньше десяти). Эти элементы монтируются в прочный корпус, который обеспечивает соответствующую защиту фотомодулей, как от пыли, так и от атмосферных осадков.

Внешний вид монокристаллического фотомодуля представлен на рис. 1, а самой батареи – на рис.2.

В чём преимущества подобной компоновки?

  1. Такая панельная конструкция допускает устойчивую эксплуатацию солнечных батарей при самых различных условиях: на суше, и на море, в горной, либо равнинной местности и т.д.
  2. Монокристаллические солнечные батареи комплектуются из отдельных модулей с применением кремния сверхвысокой чистоты. После «выращивания» монокристалла, который получается методом вытяжки из жидкого кремнийсодержащего расплава, он разрезается на части толщиной, не превышающей 0,4 мм. Далее следует обработка этих кристаллов с целью придания им формы, которая требуется для встраивания в фотоэлектрическую панель.
  3. Наличие единой фотоэлектрической панели резко увеличивает коэффициент полезного действия монокристаллических батарей, который достигает 22% (панели, используемые в космических технологических решениях, имеют ещё более высокий КПД – до 38%, но практическое применение космических технологий в практику сдерживается высокой себестоимостью производства). Для сравнения – поликристаллические панели имеют КПД не выше 17…18%.

В чём причина высокой эффективности монокристаллических солнечных батарей?

Поликристаллические панели проигрывают монокристаллическим благодаря тому, что при их производстве применяется не только первичный, более «чистый» кремний, но также и его отходы, извлекаемые при утилизации отработанных солнечных батарей. Кроме того, недостаток поликристаллического кремния заключается в том, что, у него существуют зоны зернистых границ (см. рис. 3), на которых фотоэлектрическое преобразование энергии солнечного излучения в электрическую энергию происходит значительно хуже.

Таким образом, при одинаковой заявленной мощности габаритные размеры монокристаллических солнечных батарей будет меньше, чем поликристаллических.

Почему же производство поликристаллических панелей по-прежнему происходит в значительных масштабах?

Всё пока определяется стоимостью таких панелей, ибо монокристаллические солнечные батареи нуждаются в значительно более высококачественном кремнии. Хотя, если пересчитать на удельную мощность (соотношение цены панели к вырабатываемой ею солнечной энергии), то монокристаллические панели проигрывают поликристаллическим не более 10%. Поэтому, с усовершенствованием технологии получения высокочистых монокристаллов кремния, перспективность использования именно монокристаллических солнечных батарей станет очевидной.

Ведущие производители монокристаллических солнечных батарей

Наибольшими показателями надёжности и эффективности обладают изделия, производимые следующими фирмами:

  • Elkem A/S Silicon Metal Division (Норвегия);
  • Sdad Espanola de Carburos Metalicos SA (Испания);
  • Eckart GmbH and Co (Германия);
  • Globe Metallurgical (США);
  • Dow Chemical Corporation (Южная Корея).

На отечественном рынке имеются также панели, реализуемые компанией

  • “Солнечный ветер” (Краснодар), с монокремнием от Nitol Solar (Россия) и с комплектующими из Германии;
  • Хевел ( Новочебоксарск);

Технические характеристики одной из лучших монокристаллических панелей SolGen 200 Вт/24 В (США) составляют:

  • номинальная мощность 200 Вт;
  • габаритные размеры (длина*ширина*высота) 1580*808*35 мм;
  • диапазон температурной эксплуатации от -50°C до +90°C;
  • гарантийный срок службы панелей не менее 30 лет;
  • предоставляется 5-летняя гарантия на всю систему.

Как выбрать солнечные панели?

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов.

Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства.

Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам.

Для уверенного выбора обратитесь к специалисту, который поможет вам подобрать вариант для конкретно вашей ситуации.

Если ваше пространство не велико, а нужно максимум энергии, в этом случае ищите монокристаллические панели с наибольшей мощностью. Если ограничен ваш бюджет, а установка планируется наземная, то заранее продумайте все возможности.

Обратите внимание: выбор между поликристаллическими и монокристаллическими батареями мощностью в 250 Вт не существенен, так что берите те, у которых ниже стоимость или решайте по другим факторам. Установка солнечного коллектора имеет огромный плюс в практическом аспекте. Такая инвестиция будет служить вам долгое время и снижать ваши траты на оплату электроэнергии

Батареи служат источниками постоянной подачи энергии, а ресурсы для них бесконечны

Такая инвестиция будет служить вам долгое время и снижать ваши траты на оплату электроэнергии. Батареи служат источниками постоянной подачи энергии, а ресурсы для них бесконечны

Установка солнечного коллектора имеет огромный плюс в практическом аспекте. Такая инвестиция будет служить вам долгое время и снижать ваши траты на оплату электроэнергии. Батареи служат источниками постоянной подачи энергии, а ресурсы для них бесконечны.

Свойства кристаллических и аморфных веществ

Одно из основных свойств кристалла — однородность. Однородным должно считаться тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом; т.е. находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла — это материализованная плоская узловая решетка, а ребро — материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов.

Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Анизотропность — это способность кристалла проявлять различные свойства в разных направлениях. Поскольку различные направления в кристаллической структуре вещества, построенного по закону трехмерной периодичности, могут и иметь неодинаковые расстояния между атомами (узлами), а следовательно, и разные по силе химические связи, то и свойства по таким направлениям могут отличаться, а сами кристаллы будут анизотропны относительно этих свойств.

Если свойство не изменяется в зависимости от направления, то вещество изотропно.

Способность самоограняться, т. е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение.

Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы построены из материальных частиц — ионов, атомов или молекул, геометрически правильно расположенных в пространстве. Для описания порядка расположения частиц в пространстве их стали отождествлять с точками.

Из такого подхода постепенно сформировалось представление о пространственной, или кристаллической, решетке как о бесконечном трехмерном периодическом образовании. В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (ряд— совокупность узлов, лежащих на одной прямой) и плоские сетки (плоскости, проходящие через любые три узла).

Таким образом, кристаллическое вещество имеет строго закономерное (решетчатое, или ретикулярное) внутреннее строение (от лат. reticulum — сеточка).

Одна из главнейших особенностей кристаллических структур — закономерная повторяемость в пространстве их узлов, рядов и плоских сеток. Отсюда характерные свойства кристаллических веществ:

  • а)однородность строения (однородностью кристалла назовём одинаковость узора взаимного расположения атомов во всех частях его объема);
  • б) анизотропия (в изотропных телах все свойства — теплопроводность, электропроводность, твёрдость царапания и т.д.

— одинаковы в любом направлении, а в анизотропных телах все свойства неодинаковы в непараллельных направлениях, т.е., например, в одном направлении электрический ток проходит быстрее, в другом — медленей.

Бывают ли дешевые солнечные панели

Специалисты и ученые стремятся создать батареи, которые станут широко доступными для всего населения. Небольшими, но успешными шагами они приближаются к этой цели и при этом каждый раз совершенствуют материалы, которые используются в данной технологии. Конечно, существуют и такие производители, которые халатно относятся к товару, который предлагают покупателям и заведомо продают низкокачественную продукцию. Именно в этом заключается основная проблема, если вы вдруг захотели приобрести недорогую солнечную батарею.

Не только жители РФ, но и стран Европы убедились в том, что недорогие установки предлагают китайские производители. Можно заметить, что именно китайские производители заполонили рынок солнечных батарей, заставив при этом признать себя банкротами многие крупные компании, которые просто не выдержали конкуренции с китайцами.

Так, например вы должны знать, какие товары могут быть бюджетными, а какие нет. Дешевые монокристаллические панели найти вряд ли удастся, так как эти типы включают в себя самые мощные элементы

Поэтому очень важно знать какие характеристики включает в себя установка

С другой стороны существуют компании гиганты, которые благодаря субсидиям государства снижают стоимость на те солнечные батареи, которые они производят. К таким можно отнести крупные немецкие и конечно же российские производства. Если же вы решились на приобретение китайской продукции, то лучше отдать предпочтение какой-то известной фирме, которая уже оправдала свое имя на рынке.

Что такое солнечная батарея? Это генератор фотоэлектрического типа с постоянным током, который преобразует солнечную энергию в электрическую. В таких батареях используются кремниевые модули -полупроводники.

Для того чтобы выбрать солнечную батарею для дома вам потребуется обратить внимание на несколько наших советов. А именно:. А именно:

А именно:

Во время приобретения системы солнечной батарей, учтите, что она должна подходит к вашему дому. Во-первых, большую роль играет климат вашей местности. От него будет зависеть продолжительность солнечного света над домом и естественно и время накопительного режима. Для того чтобы определить насколько ваша территория подходящая потребуется воспользоваться картой освещенности.
Учтите то количество тепла, которое вы желаете получить в конечном итоге. Самым оптимальным вариантом станет батарея, которая сможет покрыть примерно 40-80 потребностей в тепле. Системы, которые обладают меньшей эффективностью, будут стоить на порядок дороже. Так же нужно учесть проектировку и возможности всей системы. Это сможет гарантировать вам устойчивость установки при форс-мажорных случаях

Все эти расчеты лучше доверит специалистам.
Обязательно обратите внимание на изготовителя батареи, а так же на материал, который использовался в производстве фотоэлектронного элемента модуля. Здесь может быть как моно, так и поликристаллический кремний. Именно от этих качеств будет зависеть не только цена, но и КПД, а так, же срок службы установки.

Именно от этих качеств будет зависеть не только цена, но и КПД, а так, же срок службы установки.

Следуя этим советам, вы сможете подобрать именно тот тип установки, который подойдет именно к вашей территории. Но все, же лучше чтобы вашими расчетами занимались люди связанные с данной сферой деятельности.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов.

Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм. При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным. Преимуществами органических солнечных панелей являются: возможность экологически безопасной утилизации; дешевизна производства; гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Монокристаллические и поликристаллические батареи: в чем разница

Наибольшую популярность завоевали монокристаллические и поликристаллические модели, которые по-прежнему остаются серьёзными конкурентами друг друга. В чём же заключаются важные отличия?

Монокристаллическая техника создаётся на основе кремния высокой чистоты. Данная технология создания оборудования всегда оказывается более трудоёмкой по сравнению с поликристаллической, но при этом гарантируется высокий уровень эффективности продукции и её оптимальная долговечность.

Для этого следует провести небольшое сравнение между тремя разновидностями солнечных панелей, которые создаются из аморфного кремния, по поликристаллическом и монокристаллической технологии.

Срок службы

Сравниваем длительность срока эксплуатации двух моделей батарей:

  • модели из аморфного кремния – около десяти лет;
  • поликристаллические разновидности – до трёх десятков лет;
  • монокристаллические модификации – до полувека.

КПД

Коэффициент полезного действия также существенно различается:

  • аморфный кремний – около десяти процентов;
  • поликристаллические – 15%;
  • монокристаллические – не более восемнадцати процентов.

Монокристалл против поликристалла. Так что же лучше?Монокристалл против поликристалла. Так что же лучше?

На основе этого сравнения можно понять, какие современные солнечные батареи заслуживают наибольшего внимания. Однако на чём же остановить окончательный выбор: монокристаллические или поликристаллические. При этом между конкурентами отмечается серьёзное отличие: моно модели всегда занимают на 20% меньше площади, чем поликристаллическая продукция. Нужно отметить, что количество вырабатываемой электроэнергии всё же будет выше у моно батарей, так как они обладают максимально высоким КПД

Принимая во внимание такие факторы, появляется возможность понять, на каком варианте лучше всего остановить свой окончательный выбор

Заключение

Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий