Мррт контроллер

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Средние цены

Для того, чтобы понять в каком ценовом диапазоне находятся МРРТ контроллеры различных производителей, можно рассмотреть стоимость моделей, приведенных выше, это:

  • КЭС 100/20 MPPT – от 10000,00 рублей;
  • КЭС DOMINATOR MPPT 250/60 – от 40000,00 рублей;
  • Epsolar MPPT TRACER-2215BN 20А 12/24В – от 9000,00 рублей;
  • IT6415ND 60A 12V/24V/36 В – от 30000,00 рублей.
  • Victron BlueSolar 100/15 12/24В 15А – от 11000,00 рублей;
  • Victron BlueSolar 150/70 12/24/48В 70А – от 55000,00 рублей.

Как видно из приведенных цифр, наиболее дешевые, это модели китайского производства, а наиболее дорогие – европейских производителей.

Продукция отечественных предприятий несколько дороже устройств, произведенных в Китае, но дешевле изготовленных в Европе.

Применяемые на практике виды

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.


Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.


Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Типы

On/Off

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

МРРТ

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Сравнение контроллеров MPPT и PWM (ШИМ)

В солнечных и ветровых установках по производству электрической энергии используются два вида контроллеров, это МРРТ, о которых было написано выше и PWM (ШИМ) котроллеры.

ШИМ аппараты являются более дешевыми устройствами, принцип действия которых основан на использовании широтно-импульсной модуляции. Устройства данного типа подразделяются на шунтовые и последовательные.

Для того, чтобы выбрать наиболее подходящий для конкретной системы, нужно их сравнить, чтобы изучить достоинства и недостатки каждого типа подобных устройств.

Достоинства устройств разного типа:

  1. МРРТ контроллеры.

  • Возможность использования в различных системах, различающихся по источнику получения энергии (солнечные, ветровые, комбинированные системы)
  • Высокий КПД.
  • Создание оптимальных условий работы для аккумуляторных батарей позволяет продлить сроки их эксплуатации.
  • Высокое напряжение на входе позволяет уменьшить сечение кабелей и проводов, используемых для соединения элементов системы или увеличить расстояние от источника энергии до контроллера.
  • Использование устройств данного типа позволяют увеличить эффективность использования солнечных батарей, что обусловлено возможностью заряда аккумуляторов при низкой освещённости.
  1. PWM контроллеры.

  • Низкая стоимость.
  • Последовательные модели: позволяют использовать одновременно различные источники энергии и создают низкий нагрев во время регулирования;
  • Шунтовые модели: незначительные потери мощности в процессе работы, слабые электромагнитные помехи и низкий уровень падения напряжения в ключах.

Недостатки устройств разного типа:

  1. МРРТ контроллеры.
  • Высокая стоимость.
  • Более сложная технология, в равнении с аналогами.
  1. PWM контроллеры.
  • Последовательные модели: при полном заряде источник энергии отключается, значительные потери в последовательных ключах, электромагнитные помехи.
  • Шунтовые модели: значительный нагрев во время работы, невозможность использования с иными источниками энергии, кроме солнечных панелей.

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и  разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Какую температуру могут выдержать

Под термином «допустимая температура нагрева кабеля» чаще всего понимается параметр, определяющий температурный режим эксплуатации, при котором изоляция сохраняет свою долговечность и практические качества. Однако при выборе кабеля стоит использовать более широкий подход, то есть учесть также температуру нагрева жил.

В первом случае подразумевается температура окружающей среды, во втором — нагрев самого кабеля, вызванный электрическим сопротивлением токоведущих жил.

При чрезмерном нагреве или охлаждении изоляция может начать разрушаться. Это может привести к повреждению кабеля, а также подключённых к нему приборов и механизмов. Как следствие, допустимая температура нагрева проводов и кабелей зависит от материала изоляции.

«Обычные» кабели с пластмассовой (ПВХ пластикат, полиэтилен, полимеры), бумажной, резиновой изоляцией на эксплуатацию при температурных условиях от −50 до +50 градусов по цельсию. При превышении этого значения материал оболочки и изоляции начинает деградировать до расплавления. Сверхохлаждение приводит к механическому разрушению изоляции — появлению трещин, изломов и других дефектов.

К примеру, допустимая температура нагрева кабеля ВВГнг в стандартном исполнении во время эксплуатации — +50°C, минимальная — −50°C, а у кабеля, в конструкции которого используется ПВХ пластикат повышенной холодостойкости может выдерживать температуру до −60°C включительно.

Важно! Если планируется эксплуатировать кабель в более экстремальных температурных условиях, целесообразно рассмотреть специализированные модели с изоляцией из иных материалов — фторопласт, силикон и других. Кроме того, при эксплуатации в экстремально холодных условиях подойдут холодостойкие исполнения

Выбор изделия

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.


Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.


Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.


Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.


Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Контроллер заряда своими руками

При наличии опыта в работе с электротехническим оборудованием создать контроллер для заряда солнечной батареи можно самостоятельно. На картинке ниже представлена самая простая схема такого устройства.

Рассмотрим принцип работы такой схемы. Фотоэлемент LDR или фоторезистор — прибор, который меняет свое сопротивление при попадании на него света, то есть это солнечная панель. Управляется с помощью транзисторов. Во время облучения солнцем транзисторы закрыты. Ток передается от панели к аккумулятору через диод D2, нужен он здесь для того, чтобы ток не потек в другую сторону. При полной зарядке стабилизатор ZD отсылает сигнал лампе LED red, которая зажигается красным светом, и зарядка прекращается. Когда напряжение на аккумуляторе уменьшается, стабилизатор выключается, и происходит зарядка. Резисторы необходимы для того, чтобы уменьшить силу тока, чтобы элементы не вышли из строя. На схеме также указан трансформатор, от которого тоже может происходить зарядка, принцип тот же. По данной ветке начинает течь ток в темное время суток или в пасмурную погоду.

Устройства МРРТ

Наиболее эффективными и стабильными считаются контроллеры для солнечной батареи модификации МРРТ – Maximum Power Point Tracking. Данные устройства осуществляют слежение за мощностью заряда по достижении максимального предела. В этом процессе используются сложные алгоритмы контроля показаний напряжения и тока, устанавливается наиболее оптимальное соотношение характеристик, обеспечивающих максимальную эффективность солнечной системы.

В процессе эксплуатации практически установлено, что контроллер для солнечных батарей mppt является более совершенным и существенно отличается от других моделей. По сравнению с приборами PWM, он эффективнее примерно на 35%, соответственно на столько же продуктивнее получается и сама система.

Более высокое качество и надежность таких устройств достигается за счет сложной схемы, дополненной компонентами, обеспечивающими тщательный контроль в соответствии с условиями эксплуатации. Специальные схемы выполняют слежение и сравнение уровней тока и напряжения, после чего определяется максимальная выходная мощность.

Главной особенностью контроллеров МРРТ является способность настройки солнечной панели на максимальную мощность вне зависимости от погоды в данный момент. Таким образом, батарея работает более эффективно и обеспечивает необходимый заряд АКБ.

В заключении

Если щепорез для арболита нужен исключительно для собственных целей, то есть смысл сделать его кустарным образом, так как если приобретать его в заводском исполнении, то обойдется он не очень дешево. Сделанный щепорез можно поставить под навесом на приусадебном участке или в гараже.

Важно! При работе с щепорезом необходимо придерживаться следующих правил: недалеко от агрегата иметь средства пожаротушения и аптечку для оказания первой помощи; работу осуществлять в защитных очках и перчатках

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Порядок подключения контроллеров PWM

Общим условием подключения, обязательным для всех контроллеров, является их соответствие используемым солнечным фотоэлементам. Если прибор должен работать с входным напряжением 100 вольт, то на выходе панели оно не должно превышать этого значения.

Перед подключением контрольной аппаратуры необходимо выбрать место установки. Помещение должно быть сухим, с хорошей вентиляцией, из него нужно заранее убрать все пожароопасные материалы, а также ликвидировать причины влажности, излишней теплоты и вибраций. Обеспечивается защита от прямого ультрафиолетового излучения и негативных воздействий окружающей среды.

При подключении в общую схему контроллеров PWM необходимо точное соблюдение последовательности операций, а все периферийные устройства соединяются через свои контактные клеммы:

  • Клеммы АКБ соединяются с клеммами прибора с соблюдением полярности.
  • В месте контакта с положительным проводником выполняется установка защитного предохранителя.
  • Далее подключаются солнечные панели так же с соблюдением полярности проводов и клемм.
  • Правильность подключений проверяется контрольной лампой на 12 или 24 В, подключенной к выводам нагрузки.

Порядок действий должен обязательно соблюдаться. Например, ни в коем случае нельзя подключать солнечные панели к контроллеру, не подключенному к аккумулятору. В этом случае напряжение не найдет выхода и прибор может сгореть. Инвертор не должен подключаться к контроллеру через клеммы нагрузки, а соединяться напрямую с клеммами АКБ.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Предпосылки для применения MPPT контроллера.

Текущая цена MPPT контроллеров позволяет эффективно их применять при мощности модулей от 200 Вт. Или если напряжение солнечного модуля нестандартное. Это позволит увеличить выработку фотоэлектрической системы без добавления фотоэлектрических модулей. На данный момент на рынке представлены MPPT контроллеры имеющие несколько MPPT входов для оптимизации полей солнечной станции имеющих разное ориентирование относительно юга. Следует заметить, что все современные сетевые и гибридные фотоэлектрические инверторы используют слежение за точкой максимальной мощности солнечных батарей.

За счет чего MPPT контроллер повышает выработку солнечной электростанции?

В схемах с применением простых контроллеров, солнечный модули подключается к аккумулятору напрямую, таким образом напряжение их сравнивается. На практике оптимальное напряжение солнечной панели почти всегда отличается от напряжения на аккумуляторе. Типичный 12В аккумулятор требует для полного заряда поддерживать напряжение 14,4В в течение 2-4 часов. Эта стадия называется стадией абсорбции (насыщения).

Вольт-Амперная хараткеристика солнечной панели

Глядя на типичную вольт-амперную характеристику солнечной батареи, можно увидеть, что производительность энергии может быть увеличена, если контроллер заряда будет следить за точкой максимальной мощности солнечной батареи MMP.

MPPT контроллер отслеживает ток и напряжение на солнечной батарее, перемножает их значения и определяет наилучшее сочетание значений тока и напряжения, при которых мощность панели будет максимальной. Встроенный процессор также следит, на какой стадии заряда находится аккумулятор (наполнение, насыщение, выравнивание, поддержка) и на основании этого определяет, какой ток должен подаваться в аккумуляторы.

Точка максимальной мощности может вычисляться разными способами. В простейшем случае контроллер последовательно снижает напряжение от точки холостого хода до напряжения на аккумуляторе. Точка максимальной мощности будет находиться где-то в промежутке между этими значениями.

MPPT повышении выработки энергии от солнечного модуля

Положение точки максимальной мощности зависит от нескольких параметров — от уровня солнечной интенсивности, затенения солнечной панели, температуры, разнородности используемых модулей и т.д. MPPT Контроллер периодически меняет значение точки от найденной на предыдущей стадии в обе стороны, и если мощности при этом увеличивается, то он переходит на работу в этой точке. Теоретически, при поиске ТММ теряется немного энергии, но эта потеря очень незначительна по сравнению в той дополнительной энергией, которую обеспечивает MPPT контроллер.

Количество дополнительно полученной энергии при использовании MPPT контроллера сложно однозначно определить. Основными факторами, влияющими на дополнительную выработку. являются температура и степень заряженности аккумуляторных батарей. Наибольшая добавка к выработке будет при низких температурах модуля и разряженных батареях.

Точка максимальной мощности солнечной батареи при разных температурах модуля

На рисунке показано, как может меняться напряжение в точке максимальной мощности при разных температурах солнечной панели. Чем горячее солнечный модуль, тем меньше напряжение на нём и, соответственно, выработка энергии солнечной батареей снижается. В какие-то моменты точка максимальной мощности может быть ниже напряжения на аккумуляторе, и в этом случае вы не получите никакого выигрыша в выработке энергии по сравнению с ШИМ контроллером. Такое же влияние оказывает и частичное затенение солнечной батареи.

Поэтому обычно при использовании MPPT контроллеров необходимо коммутировать солнечные батареи на более высокое напряжение. Большинство контроллеров может отслеживать точку максимальной мощности достаточно в широких пределах. Такое решение также позволит повысить выработку энергии солнечной батареей при пониженных освещенностях. Однако, не нужно делать слишком большую разницу между входным и выходным напряжением, иначе КПД контроллера падает.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

присоединение аккумуляторов к соответствующим клеммам прибора

Важно проследить за соблюдением полярности
в точке подключения плюсового провода необходимо установить предохранитель
к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
на выход нагрузки включить сигнальную лампу. Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора

Его можно присоединять только к блоку АКБ

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Навигация

Что будет, если не производить установку

Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

Выводы и полезное видео по теме

Контроллер для солнечной батареиКонтроллер для солнечной батареи

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий