12 балльная шкала msk 64. шкалы интенсивности землетрясения

Другие виды землетрясений

Вулканические землетрясения

Вулканические землетрясения — разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана . Причина таких землетрясений — лава , вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность — увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах , а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями . Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при ядерном взрыве . Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Сейсмостойкость (сейсмоустойчивость)

Если говорить об эксплуатации оборудования, механизмов, зданий и сооружений в местностях, находящихся под угрозой сейсмического воздействия, на первый план выходит такая характеристика, как сейсмостойкость или, как ее еще называют, сейсмоустойчивость. Она показывает прочность, степень устойчивости обозначенных выше предметов перед лицом землетрясений.

Внимание этому показателю стало уделяться не так давно, а его актуальность связана с необходимостью обеспечения бесперебойной работы оборудований и построек в районах с повышенной сейсмоопасностью. Прежде всего, дело касается атомных электростанций и используемым на них трубопроводам, машинным механизмам, электротехники и т.д

Компания СТРОЙВЕНТМАШ уже много лет занимается испытаниями оборудования на соответствие его требованиям соответствующих стандартов сейсмической устойчивости. Наши специалисты являлись соавторами многих нормативных документов, регулирующих данную область деятельности. Обращение к нам – залог достоверно и эффективно выполненной квалифицированными сотрудниками работы.

Проверка на сейсмостойкость предполагает получение следующих видов документов:

Протокол сейсмостойкости выдается по результатам выполненных испытаний оборудования и механизмов. Иногда он подкрепляется сертификатом, а порой вполне может использоваться самостоятельно без каких-либо дополнительных документов.

Сертификат сейсмостойкости который получают на основании протокола. Он является свидетельством того, что испытания были проведены и выдан протокол, в котором изложены детальные данные относительно выполненной работы. Без протокола сертификат не может считаться достоверным – он является недействительным.

Сертификат ВИБРОСЕЙСМОСТАНДАРТ сертификат соответствия требованиям сейсмостойкости, вибростойкости и ударопрочности. Оформляется на все виды оборудования, материалов и конструкций используемых на сейсоопасных объектах и АЭС.

Методы определения сейсмостойкости (сейсмоустойчивости)

Определяя сейсмостойкость используют в основном три метода:

  • Расчет сейсмостойкости;
  • Расчетно-эксперементальный метод;
  • Реальные испытания сейсмостойкости на стенде.

Существует три метода определения параметров сейсмостойкости: расчет, расчетно-экспериментальный, реальные испытания. Предпочтительно использование методов связанными с Реальными исыпытаниями, т.к. реальный эксперемент показывает полуную картину от внешних воздействий. Это четко видно при испытаниях Измерительных приборов, Электрооборудования, Изделий под давлением, т.к. можно наглядно наблюдать работоспсобность, точность измерений и протечки.

Расчет сейсмостойкости применяется для изделий не содержащих измерительных приборов и контактных электрических аппаратов, которые допускается не испытывать на виброустойчивость, а рассчитывать на прочность:

  • При отсутствии испытательного оборудования соответствующей грузоподъемности или невозможности проведения испытаний по техническим причинам.
  • Для оценки ранее испытанного изделия на соответствие новым, более жестким требованиям.
  • Для оценки изделия, аналогично ранее испытанному, но содержащему изменения, влияющие на его динамические характеристики.
  • Для оценки изделий, не имеющих резонансных частот в диапазоне 1 — 30 Гц.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 17516.1-90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам

ГОСТ 24346-80 Вибрация. Термины и определения

ГОСТ 26883-86 Внешние воздействующие факторы. Термины и определения

ГОСТ 30546.1-98 Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости

ГОСТ 30546.2-98 Испытания на сейсмостойкость машин, приборов и других технических изделий. Общие положения и методы испытаний

ГОСТ 30546.3-98 Методы определения сейсмостойкости машин, приборов и других технических изделий, установленных на месте эксплуатации, при их аттестации или сертификации на сейсмическую безопасность

ГОСТ 30631-99 Общие требования к машинам, приборам и другим техническим изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Выполненные работы

Компанией СТРОЙВЕНТМАШ было проведено множество работ по испытаниям, аттестации и сертификации на сейсмостойкость, как для общепромышленных объектов (Россети, Транснефть и др.), так и для объектов Атомной энергетики. Наши специалисты участвовали в создании нормативных документов, касающихся стандартизации и испытаний. Их конструкторские идеи нашли свое отражение при проектировании оборудования, используемого атомными электростанциями.

Насосы Grundfos

Schnider Electric

Toshiba-Mitsubishi

Оборудование Транснефть

Оборудование MOTOROLA

Завод Уралприбор

Генераторы FG WILSON

Оборудование РФЯЦ ВНИИЭФ

Оборудование SIEMENS

Продукция Спецкабель

Чеховский завод «Энергомаш»

Кондиционер ВЕЗА

Таблица сейсмической интенсивности MSK-64

12-бальная шкала сейсмической интенсивности Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СНиП II-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».

Балл. Сила землетрясения Краткая характеристика
I. Не ощущается Не ощущается. Отмечается только сейсмическими приборами.
II. Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными.
III. Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
IV. Интенсивное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
V. Довольно сильное Под открытым небом ощущается многими, внутри домов — всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
VI. Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
VII. Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
VIII. Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. Падают фабричные трубы.
IX. Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
X. Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
XI. Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов, разрушаются мосты.
XII. Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Изменяется рельеф. Ни одно сооружение не выдерживает. Ни один человек не выживает.

4 Общие положения

Воздействие землетрясений представляет собой вибрации, которые могут быть смоделированы как случайные процессы и могут влиять на изделия, вызывая напряжения различных видов.

В настоящем разделе приведена информация о характеристике землетрясений и о динамических свойствах изделий во время землетрясений. Приведенные числовые значения являются типовыми и иллюстративными. Их не следует использовать в качестве конкретных требований.

ПримечаниеВ МЭК 60721-2-6 данные об ускорениях приведены для свободной поверхности Земли; уточнения, относящиеся к сооружениям, представлены только в самом общем виде. В настоящем стандарте эти данные более полные и конкретные.

4.1 Происхождение и распространение землетрясений

Землетрясения возникают тогда, когда напряжение в глубинах земной коры возрастает до степени, вызывающей ее разрыв. Эти явления происходят в районах, известных в качестве зон сейсмической активности, имеющих такие географические особенности, как океанические подводные горные гряды, горные цепи, вулканы, океанические хребты, тектонические разломы.

Внезапный разрыв высвобождает потенциальную энергию деформации, которая распространяется от очага землетрясения в форме трех типичных основных волн (с различными скоростями):

— продольных объемных волн, вызывающих сжатие и расширение породы в направлении распространения волн;

— поперечных волн, вызывающих сдвиг породы в направлении, перпендикулярном к направлению распространения волн;

— поверхностных волн, являющихся комбинацией двух предыдущих и приводящих к возникновению сейсмических воздействий на поверхности Земли.

ПримечаниеЕсли эпицентр землетрясения находится на дне крупного водного пространства (моря, океана), то энергия деформации может вызвать появление новых мощных водяных волн высотой до нескольких метров, распространяющихся по поверхности водного пространства с большой скоростью; при подходе к берегу такая волна образует огромную стену прибоя большой разрушительной силы (цунами).

4.2 Последствия землетрясений

Землетрясения вызывают случайные перемещения грунта, которые характеризуются последовательными, но статистически независимыми горизонтальной и вертикальной составляющими. Умеренное землетрясение (как правило) может продолжаться от 15 до 30 с; сильное землетрясение — от 60 до 120 с; жесткая часть землетрясения с наибольшим ускорением Земли — до 10 с.

Максимальная энергия типичного широкополосного случайного колебания находится в пределах частот от 1 до 30 — 35 Гц, причем наиболее разрушительные эффекты наблюдаются при частотах от 1 до 10 Гц.

Примечание — При проектировании значение максимального ускорения используют для расчета нагрузок в одном направлении.

4.3 Фундаменты изделий

В типичном широкополосном спектре, описывающем перемещение земной поверхности, преобладают кратные частоты. Вибрация при перемещении земной поверхности (как горизонтальная, так и вертикальная) может быть усилена в фундаментах изделий. Для любого данного перемещения земной поверхности степень усиления зависит от частотной характеристики вибрации системы (грунт, фундамент и изделие) и от механизма демпфирования.

Перемещение грунта (главным образом горизонтальное) может быть отфильтровано и усилено на промежуточных конструкциях зданий, на которых возникают отклонения гармонических колебаний пола здания. Типичный узкополосный спектр, описывающий передвижение пола здания, показывает, что может преобладать одна частота возбуждения. Динамический ответ от закрепленных изделий может достигать ускорения, во много раз превышающего максимальное ускорение Земли, в зависимости от относительного демпфирования и собственных частот системы. Степень усиления и ширина полосы случайного колебания зависят от спектра ответа каждого здания и конструкции изделия.

Исследования значительного числа видов электротехнических изделий показали, что не существует какого-либо узкого диапазона частот, в котором наиболее вероятно наличие резонансов изделий. Предположение относительно наибольшей чувствительности изделий к воздействию землетрясений в диапазоне частот 5 8 Гц учитывает только конфигурацию спектра воздействий и не учитывает вероятность наличия собственных частот изделий в этом диапазоне.

Проводимые нами работы для определения сейсмостойкости оборудования и конструкций

Для того, чтобы получить заключение на сейсмостойкость, мы проводим следующие работы:

  • Изучение технической документации на изделия;
  • Выполнение испытаний, запись и оценка полученных данных;
  • Определение сейсмоустойчивости посредством расчетов на основании результатов,
  • Определение сейсмоустойчивости методом расчетно-экспериментальных тестов путем выезда на объект заказчика,
  • Составление рекомендаций по доработке проверяемых объектов на соответствие нормам сейсмостойкости и налаживание мероприятий по внедрению рекомендаций на практике.
  • Проведения реальных испытаний на вибростенде или ударной установке.

2.1.4. Методы прогноза землетрясений

Методы прогноза землетрясений основываются на наблюдении за аномалиями геофизических полей, измерении значений этих аномалий и обработке полученных данных.

Различают несколько методов прогноза землетрясений:

1. Метод оценки сейсмической активности. Месторасположение и число толчков различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. Часто сильное землетрясение со-

провождается большим числом слабых толчков. Выявление и подсчет землетрясений требует большого числа сейсмографов и соответствующих устройств для обработки данных.

2.
Метод измерения движения земной коры. Географические съемки

с
помощью триангуляционной сети на поверхности Земли и наблюдения со спутников из космоса могут выявить крупномасштабные деформации на ней. Точная съемка ведется с помощью лазерных источников света. Повторные съемки требуют больших затрат времени и средств, поэтому измерения проводят один раз в несколько лет.

3.
Метод выявления опускания и поднятия участков земной коры. Вертикальные движения поверхности Земли можно измерить с помощью точных нивелиров (на суше или море), мореографов (в море). Поднятие и опускание участков земной коры, как правило, свидетельствует о наступлении сильного землетрясения.

4.
Метод измерения наклонов поверхности. Для измерения вариаций угла наклона земной поверхности используются специальные приборы — наклономеры. Сеть наклономеров устанавливают около разломов на глубине 1…2 м и ниже, измерения указывают на изменения наклонов незадолго до возникновения землетрясения.

5.
Метод измерения деформации горных пород. Для измерения деформации горных пород бурят скважину и устанавливают в ней деформографы, фиксирующие величину относительного смещения двух точек.

6.
Метод определения уровня воды в колодцах и скважинах. Уровень грунтовых вод перед землетрясением часто повышается или понижается изза изменений напряженного состояния горных пород. Уровень воды в скважинах вблизи эпицентра часто испытывает стабильные изменения: в одних скважинах он становится выше, в других — ниже.

7.
Метод оценки изменения скорости сейсмических волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются, а также от содержания воды и других физических характеристик. При землетрясениях образуются различные типы сейсмических волн. Наибольший интерес среди этих волн представляют продольная
P
и поперечная S
волны. Установлено, что перед сильным землетрясением наблюдается резкое уменьшение отношения скоростей волн P
и S
, что может явиться признаком, подтверждающим возможность землетрясения.

8.
Метод регистрации изменения геомагнитного поля. Земное магнитное поле может испытывать локальные изменения
из-за деформации горных пород и движений земной коры. С целью измерения малых вариаций магнитного поля используют специальные приборы — магнитометры.

9.
Метод регистрации изменения земного электросопротивления. Одной из причин изменения электросопротивления горных пород может стать изменение напряженности горных пород и содержания воды в земле, что, в свою очередь, может быть связано с возможностью возникновения землетрясения.

Измерения электросопротивления проводятся с помощью электродов, помещаемых в почву на расстоянии нескольких километров друг от друга, при этом измеряется электрическое сопротивление толщи земли между ними.

10.
Метод определения содержания радона в подземных водах. Радон — это радиоактивный газ, присутствующий в грунтовых водах и воде скважин. Период его полураспада составляет 38 сут, он постоянно выделяется из земли в атмосферу. Перед землетрясением происходит резкое изменение количества радона, выделяющегося из воды глубоких скважин.

11.
Метод наблюдения за поведением животных, птиц, рыб. Необычное поведение многих живых существ объясняется тем, что они гораздо более чувствительны к звукам и вибрациям, чем человек.

Шкала Рихтера. Магнитуда.

Нередко, в том числе и в средствах массовой информации, можно слышать о происшедшем где-либо землетрясении силой, к примеру, в 6 баллов по шкале Рихтера.

Это неверно. Шкала Рихтера описывает не интенсивность землетрясения, выраженную в баллах, а совершенно другую характеристику, выраженную в других единицах.

Шкала Рихтера оценивает величину высвободившейся сейсмической энергии в эпицентре по измеренной приборами амплитуде колебаний почвы дошедших в точку измерения. Выражается эта величина в магнитуде.

Сам Рихтер магнитуду любого толчка определял как: «логарифм, выраженной в микронах, амплитуды записи этого толчка, сделанной стандартным короткопериодным крутильным сейсмометром на расстоянии в 100 километрах от эпицентра».

Магнитуда высчитывается после измерения амплитуды на сейсмограмме. А при расчетах необходимо внести поправки: на глубину очага землетрясения, на то, что измерения были проведены нестандартным сейсмометром. Необходимо привести вычисления к измеренным на стандартном расстоянии 100 км то эпицентра.

Это непростые вычисления. И из-за перечисленных сложностей величины магнитуд, выданных  различными источниками могут незначительно отличаться.

Но в целом они дадут объективную оценку мощности землетрясения.

Поэтому правильно будет сказать, что в определенном месте произошло землетрясение с магнитудой, скажем, -5, по шкале Рихтера.

Магнитуда, вычисленная в различных точках по шкале Рихтера будет иметь одно значение. Интенсивность толчков в баллах в различных точках будет различная.

В этом и состоит различие 12 бальной шкалы землетрясений и 9,5 бальной шкалы Рихтера, выраженной в магнитуде (шкала Рихтера имеет диапазон 1 — 9,5 магнитуды).

Не стоит путать ( а в СМИ это случается сплошь и рядом) понятия шкала Рихтера и 12 бальная шкала землетрясений.

Интенсивность по шкале Рихтера определяется сразу по показаниям сейсмографов. Интенсивность в баллах определяется позже, по оценке воздействия на земную поверхность. Поэтому самые первые сообщения по оценке мощности толчков приходят именно по шкале Рихтера.

Шкала Рихтера была разработана автором в 1935 году.

Как правильно сообщить об интенсивности толчков в магнитуде по шкале Рихтера?

Верное употребление — «землетрясение магнитудой 7 по шкале Рихтера».

Ранее, по недосмотру, применялось неправильное выражение — «землетрясение 7 баллов по шкале Рихтера».

Или так-же не правильно — «землетрясение 7 магнитуд по шкале Рихтера» или «магнитудой 7 баллов по шкале Рихтера».

Шкала Рихтера описывает мощность толчков в эпицентре, вне зависимости от условий и вводит в употребление единицу измерения мощности толчков — магнитуда. Другие шкалы описывают воздействие их на поверхность в различных местах в зависимости от условий, грунтов, пород, отдаленности от эпицентра и т. д.

По этой причине шкала Рихтера является самой объективной и научно обоснованной.

Шкала Рихтера (шутка)

КАРТЫ СЕЙСМИЧЕСКИХ РАЙОНОВ

Согласно СП 14.13330.2014:

4.3* Интенсивность сейсмических воздействий в баллах (фоновую сейсмичность) для района строительства следует принимать на основе комплекта карт общего сейсмического районирования территории Российской Федерации (ОСР-2015), утвержденных Российской академией наук. Указанный комплект карт предусматривает осуществление антисейсмических мероприятий при строительстве объектов и отражает 10%-ную — карта А, 5%-ную — карта В, 1%-ную — карта С вероятности возможного превышения (или 90%-ную, 95%-ную и 99%-ную вероятности непревышения) в течение 50 лет указанных на картах значений сейсмической интенсивности. Указанным значениям вероятностей соответствуют следующие средние интервалы времени между землетрясениями расчетной интенсивности: 500 лет (карта А), 1000 лет (карта В), 5000 лет (карта С). Список населенных пунктов Российской Федерации, расположенных в сейсмических районах, с указанием расчетной сейсмической интенсивности в баллах шкалы MSK-64 для средних грунтовых условий и трех степеней сейсмической опасности — А (10%), В (5%), С (1%) в течение 50 лет приведен в приложении А*.

Карта А предназначена для проектирования объектов нормального и пониженного уровня ответственности. Заказчик вправе принять для проектирования объектов нормального уровня ответственности карту В или С при соответствующем обосновании.

Решение о выборе карты В или С, для оценки сейсмичности района при проектировании объекта повышенного уровня ответственности, принимает заказчик по представлению генерального проектировщика.

СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ РОССИИ. ОСР-2015-С

НАЖМИТЕ ДЛЯ УВЕЛИЧЕНИЯ КАРТЫ

Согласно СП 14.13330.2011 не действует.

Согласно СП 14.13330.2011:

4.3 Интенсивность сейсмических воздействий в баллах (сейсмичность) для района строительства следует принимать на основе комплекта карт общего сейсмического районирования территории Российской Федерации (ОСР-97), утвержденных Российской академией наук. Указанный комплект карт предусматривает осуществление антисейсмических мероприятий при строительстве объектов и отражает 10%-ную — карта А, 5%-ную — карта В, 1%-ную — карта С вероятности возможного превышения (или 90%-ную, 95%-ную и 99%-ную вероятности непревышения) в течение 50 лет указанных на картах значений сейсмической интенсивности. Указанным значениям вероятностей соответствуют следующие средние интервалы времени между землетрясениями расчетной интенсивности: 500 лет (, 1000 лет (, 5000 лет (. Список населенных пунктов Российской Федерации, расположенных в сейсмических районах, с указанием расчетной сейсмической интенсивности в баллах шкалы MSK-64 для средних грунтовых условий и трех степеней сейсмической опасности — А (10%), В (5%), С (1%) в течение 50 лет приведен в приложении Б.

Комплект карт ОСР-97 позволяет оценивать на трех уровнях степень сейсмической опасности и предусматривает осуществление антисейсмических мероприятий при строительстве объектов различной ответственности: карта А — объекты нормальной (массовое строительство) и пониженной ответственности; карты В и С — объекты повышенной ответственности (особо опасные, технически сложные или уникальные сооружения)
Значение сейсмической нагрузки следует уточнять с учетом сочетаний сейсмичности (балльности) для данной площадки на картах А, В, С, уровня ответственности и назначения сооружения согласно таблицам 3 и 4.

НАЖМИТЕ ДЛЯ УВЕЛИЧЕНИЯ КАРТЫ

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий