Потенциальность электростатического поля

Что такое потенциал

Разница потенциалов перемещает заряженную частицу. Однако справедливо и обратное утверждение. По выполненным затратам определяют количество энергии, которую надо использовать на соответствующее передвижение. В базовых понятиях оперируют единичным положительным зарядом.

Заряды с разными потенциалами

На левом рисунке (1) изображены заряды со сравнительно небольшим энергетическим запасом. На правом (2) – показано измененное расположение силовых линий при увеличении потенциала.

Повышение напряженности допустимо только до определенного уровня, ограниченного диэлектрическими характеристиками материала (среды). При определенном значении происходит пробой между точками с разными потенциалами. Примеры – молния, короткое замыкание. При q1=q2 поле отсутствует.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль. В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты. При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным. Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль. Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное. Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения. Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками. Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления. Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

10 Потенциал электрического поля Разность потенциалов10 Потенциал электрического поля Разность потенциалов

Однако цепи с изолированной нейтралью используются и в целях безопасности

Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике

Основные характеристики

Их можно описать при помощи математических закономерностей, а некоторые — выразить графически. Последние характеристики являются векторными, то есть имеющими направление

Это важно, поскольку при решении практических задач часто приходится оперировать не модулем величины, а проекцией вектора на какую-либо выбранную ось

Основными параметрами поля являются:

  1. напряженность;
  2. потенциал;
  3. индукция.

Напряженность поля

Это силовая характеристика электрического поля. Величина это векторная, и она характеризует силу, с которой поле воздействует на заряд в конкретной точке. Математически это выражается так:

Ē = F̄/q.

Если подставить сюда формулу закона Кулона, то получим:

Ē = q₀ / 4 π ε ε₀ r ².

Если поле создано двумя зарядами, то результирующая напряженность рассчитывается графически — при помощи сложения векторов напряженностей от каждого отдельного источника. Этот способ получил название принципа суперпозиции.

3. Электрическое поле. Характеристики. Пробный заряд. (русс яз)3. Электрическое поле. Характеристики. Пробный заряд. (русс яз)

Потенциалы и их разность

Электрическое поле способно совершать работу. Если пробный заряд передвигать в поле, то работа, выполненная эл. полем, будет зависеть от начального и конечного расстояние от пробного заряда до центра эл. поля. Сравнить это можно с человеком, который собрался прыгать с крыши. Пока он находится на высоте десятого этажа, его потенциальная энергия будет равна:

W = -GMm / Rr.

Или если учесть соразмерность земли и человека:

W = mgh.

Пока человек не прыгнул, он обладает потенциальной энергией. Когда же он, наконец, упадет, гравитационное поле совершит работу, численно равную вышеуказанной величине. При этом не учитывается горизонтальное перемещение — эту работу совершал сам покойный.

W = q₁ q₀ / 4 π ε ε₀ r.

При перемещении в другую точку, когда расстояние r будет иным, поле совершит работу, равную:

A = W₁ — W₂ = q₁ q₀ /4 π ε ε₀ r₁ — q₁ q₀ / 4 π ε ε₀ r₂.

6. Электрическое поле.  Напряжение. Разница потенциалов. (русс яз)6. Электрическое поле. Напряжение. Разница потенциалов. (русс яз)

Если из обоих слагаемых выделить параметр, который относится непосредственно к полю, а не к пробному заряду, он будет выглядеть так:

φ₁ = q₀ /4 π ε ε₀ r₁; φ₂ = q₀ / 4 π ε ε₀ r₂.

И вот это φ и называется потенциалом поля в точке. Исходя из всех написанных выше формул, можно выразить эту величину так:

φ ₁ = W₁ / q₁; φ₂ = W₂ / q₁.

Таким образом, работа, которую совершит поле, будет выражена следующим образом:

A = W₁ — W₂ = φ₁ q₁ — φ₂ q₁ = q₁ (φ₁ — φ₂).

Выражение в скобках будет называться разностью потенциалов, или напряжением. Она показывает, какую работу совершит поле по перемещению пробного заряда.

A/q = (φ₁ — φ₂).

Единица этой величины, Дж/Кл, получила название Вольт, в честь ученого Алессандро Вольта. От этой единицы отсчитывают размерность и других величин в электростатике и электродинамике. Например, напряженность поля измеряется в В/м.

Электрическое полеЭлектрическое поле

Электрическая индукция

Эта величина характеризует электрическое поле, что называется, в чистом виде. В реальности мы имеем дело с полем в различных средах, имеющих определенную диэлектрическую проницаемость. Несмотря на то что для большинства веществ это табличная величина, в ряде случаев она непостоянна, а ее зависимость от параметров среды (температура, влажность и т. д. ) нелинейна.

Такое явление характерно для сегнетовой соли, титаната бария, ниобата лития и ряда других.

D = ε ε₀ E.

Это тоже векторная величина, направление которой совпадает с направлением напряженности.

Разность потенциалов — энергетическая характеристика

Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется потенциалом φначальное, и конечную точку, которая также имеет свой потенциал φконечное. Разность между двумя этими величинами потенциалов называется Δφ — разность потенциалов, а иначе еще называют электрическим напряжением поля.

Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов», для электрических цепей — «падение напряжения», а для источников тока — «ЭДС источника». Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики. Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения — для участка электрической цепи, а ЭДС источника — это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?». Всё познается в сравнении, поэтому необходимо отлично ориентироваться во всех трёх вышеуказанных понятиях.

Имеем некоторый путь пройденный зарядом q от точки A до точки B, от начального потенциала, к конечному, а разница между ними и есть разность потенциалов. О чем это нам говорит? Если Δφ=φAB (разность потенциалов), тогда чтобы узнать какую работу, которую совершил заряд проделавший путь, нам надо Δφ умножить на величину заряда q, причем надо учесть знак заряда.

Полученное значение является работой, которую совершает заряд при перемещении. Иначе говоря, потенциальная энергия поля преобразуется в кинетическую энергию заряда, а так как заряд, в случае движения в сторону противоположного ему знака уменьшает напряженность поля, то потенциальная энергия поля уменьшится.

В случае, если некоторые не кулоновские силы воздействуют на заряд и тем самым переместят его в сторону поля, где знак такой же как у заряда, то работа будет совершена с противоположным знаком, точнее сказать она будет затрачена извне и общее энергетическое состояние поля увеличится. В одном случае потенциальная энергия поля уменьшается, за счет того, что часть этой энергии переходит в кинетическую, а в другом случае, если действуют на заряд внешние механические силы против кулоновских сил — потенциальная энергия возрастает из внешнего источника. В первом случае заряд движется в сторону уменьшения своего энергетического состояния, а во втором случае он движется в сторону увеличения своего энергетического состояния. Соответственно работа совершатся может либо с положительным знаком, либо с отрицательным.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​\( \vec{E} \)​ при перемещении заряда ​\( q \)​ совершает работу. Работа ​\( A \)​ электростатического поля вычисляется по формуле:

где ​\( d \)​ – расстояние, на которое перемещается заряд,
​\( \alpha \)​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле. Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​\( W \)​, так как буквой ​\( E \)​ обозначают напряженность поля:

Потенциальная энергия заряда ​\( q \)​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Напряженность электрического поля

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.

Для изучения электрического поля будем использовать пробный заряд.

Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.

Пусть электрическое поле создается точечным зарядом q. Если в это поле внести пробный заряд q1, то на него будет действовать сила \(~\vec F\).

Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q0 и пробный заряд q1. Электрическое поле действует только на пробный заряд q1 и не может действовать на свой источник, т.е

на заряд q0.

Согласно закону Кулона эта сила пропорциональна заряду q1:

\(~ F = k \cdot \dfrac{q_0 \cdot q_1}{r^2}\) .

Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q1, к этому заряду в любой точке поля:

\( \dfrac{F}{q_1} = k \cdot \dfrac{q_0}{r^2}\) , —

не зависит от помещенного заряда q1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля.

Подобно силе, напряженность поля – векторная величина, ее обозначают буквой \(~\vec E\) .

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:

\(~\vec E = \dfrac{\vec F}{q}\) .

Сила, действующая на заряд q со стороны электрического поля, равна\ .

Если в точке А заряд q > 0, то векторы \(~\vec E_A\) и \(~\vec F_A\) направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.

От знака заряда q, на который действует поле, не зависит направление вектора \(~\vec E_A\), а зависит направление силы \(~\vec F_A\) (рис. 1, а, б).

Рис. 1

В СИ напряженность выражается в ньютонах на кулон (Н/Кл).

Значение напряженности электрического поля, созданного:

  • точечным зарядом q, на расстоянии r от заряда в точке C (рис. 2) равно
    \(~E = k \cdot \dfrac{|q|}{r^2}\) .
    Рис. 2
  • сферой радиуса R с зарядом q, на расстоянии l от центра сферы в точке C (рис. 3), равно
    \(~E = k \cdot \dfrac{|q|}{l^2}\) , если lR;
    \(~E = 0\) , если l < R.
    Рис. 3
  • заряженной бесконечной пластиной с поверхностной плотностью заряда σ, равно
    \(~E = \dfrac{|\sigma|}{2 \varepsilon_0}\) ,
    где \(~\sigma = \dfrac{q}{S}\) , q – заряд плоскости, S – площадь плоскости.

Принцип суперпозиции полей

А чему будет равна напряженность в некоторой точке электрического поля, созданного несколькими зарядами q1, q2, q3, …?

Поместим в данную точку пробный заряд q. Пусть F1 — это сила, с которой заряд q1 действует на заряд q; F2 — это сила, с которой заряд q2 действует на заряд q и т.д. Из динамики вы знаете, что если на тело действует несколько сил, то результирующая сила равна геометрической сумме сил, т.е.

\(~\vec F = \vec F_1 + \vec F_2 + \vec F_3 + \ldots\) .

Разделим левую и правую часть уравнения на q :

\(~\dfrac{\vec F}{q} = \dfrac{\vec F_1}{q} + \dfrac{\vec F_2}{q} + \dfrac{\vec F_3}{q} + \ldots\) .

Если учтем, что \(\dfrac{ \vec F}{q} = \vec E\), мы получим, так называемый, принцип суперпозиции полей

напряженность электрического поля, созданного несколькими зарядами q1, q2, q3, …, в некоторой точке пространства равна векторной сумме напряженностей \(\vec E_1 , \, \vec E_2 , \, \vec E_3\), … полей, создаваемых каждым из этих зарядов:

\(~\vec E = \vec E_1 + \vec E_2 + \vec E_3 + \ldots\) .

Благодаря принципу суперпозиции для нахождения напряженности поля системы точечных зарядов в любой точке достаточно знать выражение для напряженности поля точечного заряда. На рисунке 4, а, б показано, как геометрически определяется напряженность \(~\vec E\) поля, созданного двумя зарядами.

Рис. 4

Для определения напряженности поля, создаваемого заряженным телом конечных размеров (не точечных зарядов), нужно поступать следующим образом. Мысленно разделить тело на маленькие элементы, каждый из которых можно считать точечным. Определить заряды всех этих элементов и найти напряженности полей, созданных всеми ими в заданной точке. После этого сложить геометрически напряженности от всех элементов тела и найти результирующую напряженность поля. Для тел сложной формы это трудная, но в принципе разрешимая задача. Для ее решения нужно знать, как заряд распределен на теле.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

Разность потенциалов

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Статическое и вихревое поле

Как упоминалось в начале статьи, электрическое поле может возникать вокруг переменного магнитного поля. Оно даже создает ток, что может быть достигнуто двумя путями:

  • изменением интенсивности магнитного поля, проходящего сквозь контур проводника в нем;
  • изменением положения самого проводника.

При этом проводнику вовсе не обязательно быть замкнутым — ток в нем все равно будет течь.

Для иллюстрации отличий статического и вихревого поля можно составить таблицу.

Параметр Электростатическое Вихревое
форма силовых линий разомкнутые замкнутые
чем создается неподвижным зарядом переменным магнитным потоком
источник напряженности заряд отсутствует
работа по перемещению в замкнутом контуре нулевая создает ЭДС индукции

Нельзя сказать, что первое и второе поле никак между собой не связаны. Это не так. В реальности работает такая закономерность: неподвижный заряд создает электростатическое поле, которое движет заряд в проводнике; движущийся заряд порождает постоянное магнитное поле. Если заряд движется с непостоянной скоростью и направлением, то магнитное поле становится переменным и создает вторичное электрическое. Таким образом, электрическое поле и его характеристики влияют на возможность возникновения магнитного и его параметры.

10 Потенциал электрического поля Разность потенциалов10 Потенциал электрического поля Разность потенциалов

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Определение 1

Принцип суперпозиции:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона. В случае, когда речь идет о множестве зарядов N (т.е

нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q, можно определить по формуле:

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q, можно определить по формуле:

F→=∑i=1NFia→,

где Fia→ является силой, с которой влияет на заряд q зарядqi, если прочий N-1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды dq (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Потенциал электрического поля

Помимо
напряженности электрическое поле
характеризуется еще одной важной
физической величиной – потенциалом. Рассмотрим
перемещение заряда q
в поле другого точечного заряда q
из точки 1 в точку 2 (рис

6.3). Работа силы
F
на элементарном перемещении dl определяется
соотношением

Рассмотрим
перемещение заряда q
в поле другого точечного заряда q
из точки 1 в точку 2 (рис. 6.3). Работа силы
F
на элементарном перемещении dl определяется
соотношением

, (6.5)

но
,
значит.
Подставим сюда вместо силы ее значение
из закона Кулона, получим:

. (6.6)

Для
вычисления работы перемещения заряда
из точки 1 в точку 2 по произвольному
пути 1–2 проинтегрируем (6.6) в пределах
от r1
до r2
, получим

. (6.7)

Из
выражения (6.7) следует, что работа
перемещения электрического заряда не
зависит от формы пути, по которому
перемещается заряд, а зависит только
от начальной и конечной точек. Если
заряд q,
перемещаясь в электрическом поле,
возвращается в исходную точку (r2
= r1),
то работа перемещения заряда по замкнутому
пути в электростатическом поле равна
нулю. Поля, обладающие указанным
свойством, называются потенциальными.

Найдем
отношение работы перемещения заряда к
величине этого заряда:

. (6.8)

Эта
величина не зависит от величины
перемещаемого заряда и от пути, по
которому он перемещается, и поэтому
служит характеристикой поля, созданного
зарядом q
, и называется разностью потенциалов
или электрическим напряжением.

Разность
потенциалов двух точек 1 и 2 электрического
поля измеряется работой, совершаемой
полем при перемещении единичного
положительного заряда между этими
точками.

Следует
подчеркнуть, что разность потенциалов
имеет смысл характеристики поля потому,
что работа перемещения заряда не зависит
от формы пути. Действительно, если бы
работа перемещения заряда зависела от
пути, то при перемещении одного и того
же заряда между теми же самыми точками
поля, это отношение Aq
не являлось бы однозначной характеристикой
этих точек поля.

Если
выбрать какую-либо точку пространства
в качестве начальной точки (точки
отсчета), то любой точке можно сопоставить
разность потенциалов относительно этой
начальной точки.

Для
случая поля точечного заряда наиболее
простое математическое выражение для
потенциала получается, если в качестве
начальной выбрать любую точку, удаленную
на бесконечность. Тогда работа перемещения
положительного заряда q из бесконечности
в данную точку поля, созданного другим
точечным зарядом q
, будет равна

. (6.9)

Отношение
работы перемещения положительного
заряда из бесконечности в данную точку
поля к величине этого заряда (работа по
перемещению единичного заряда) называется
потенциалом данной точки поля:

. (6.10)

Знак
минус в этом выражении означает, что в
данном случае работа совершается
внешними силами против сил поля.

Очевидно,
что напряжение U
между произвольными точками 1 и 2
электрического поля и потенциалы этих
точек связаны простым соотношением

. (6.11)

Для поля точечного
заряда

. (6.12)

Потенциал
любой точки поля, созданного положительным
зарядом – положителен и убывает до нуля
по мере удаления от заряда. Напротив –
потенциал поля, созданного отрицательным
зарядом, – отрицательная величина и
растет до нуля по мере удаления от
заряда.

Из
выражения для потенциала (6.12) следует,
что потенциал любой точки сферической
поверхностиS
c
центром в точке расположения заряда
одинаков (рис. 6.4). Такие поверхности
называются поверхностями равного
потенциала или эквипотенциальными
поверхностями.

Работу
перемещения заряда можно выразить через
разность потенциалов

.
(6.13)

Отсюда
следует, что работа перемещения заряда
по эквипотенциальной поверхности равна
нулю. Это значит, что сила, действующая
на заряд, а следовательно, и вектор
напряженности поля Е направлены
перпендикулярно эквипотенциальной
поверхности.

Используя
эквипотенциальные поверхности, можно
также дать графическое изображение
электрического поля.

Результаты,
полученные для поля точечного заряда,
легко распространить на поля, созданные
любым числом точечных зарядов, а так
как любое заряженное тело можно
представить как совокупность точечных
зарядов, то и на поле, созданное любым
заряженным телом.

Поля
точечных зарядов в соответствии с
принципом суперпозиции, накладываясь
друг на друга, не влияют друг на друга.
Поэтому потенциал поля любого числа
зарядов будет равен алгебраической
сумме потенциалов полей, созданных
отдельными зарядами, т. е.:

. (6.14)

Таким
образом, все вышеизложенное в отношении
понятия потенциала справедливо и для
поля, созданного заряженным телом любой
формы, а величину потенциала, в принципе,
можно вычислить по формуле (6.14).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение. Силу F воздействия на частицу принято называть силой Лоренца

Силу F воздействия на частицу принято называть силой Лоренца.

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Работа электростатического поля. Потенциал. Эквипотенциальные поверхности

Подробности
Просмотров: 340

Электростатическое поле — это электрическое поле неподвижного заряда.
Сила F эл, действующая на заряд, перемещает его, совершая раборту.
В однородном электрическом поле Fэл = qE — постоянная величина

Работа поля (электрической силы) не зависит от формы траектории и на замкнутой траектории равна нулю.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Электростатическая энергия — потенциальная энергия системы заряженных тел (т.к. они взаимодействуют и способны совершить работу).

Так как работа поля не зависит от формы траектории, то одновременно

Сравнивая формулы работы, получим потенциальную энергию заряда в однородном электростатическом поле

Если поле совершает положительную работу ( вдоль силовых линий ), то потенциальная энергия заряженного тела уменьшается (но согласно закону сохранения энергии увеличивается кинетическая энергия ) и наоборот.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

-энергитическая характеристика электрического поля.
— равен отношению потенциальной энергии заряда в поле к этому заряду.
— скалярная величина, определяющая потенциальную энергию заряда в любой точке электрического поля.

Величина потенциала считается относительно выбранного нулевого уровня.

РАЗНОСТЬ ПОТЕНЦИАЛОВ ( или иначе НАПРЯЖЕНИЕ )

— это разность потенциалов в начальной и конечной точках траектории заряда.

Напряжение между двумя точками ( U ) равно разности потенциалов этих точек и равно работе поля по перемещению единичного заряда.

СВЯЗЬ МЕЖДУ НАПРЯЖЕННОСТЬЮ ПОЛЯ И РАЗНОСТЬЮ ПОТЕНЦИАЛОВ

Чем меньше меняется потенциал на отрезке пути, тем меньше напряженность поля.
Напряженность электрического поля направлена в сторону уменьшения потенциала.

ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ

— поверхности, все точки которых имеют одинаковый потенциал

для однородного поля — это плоскость

для поля точечного заряда — это концентрические сферы

Эквипотенциальная поверхность имеется у любого проводника в электростатическом поле, т.к. силовые линии перпендикулярны поверхности проводника.
Все точки внутри проводника имеют одинаковый потенциал ( =0).
Напряженность внутри проводника = 0, значит и разность потенциалов внутри = 0.

Следующая страница «Электроемкость. Конденсаторы. Энергия заряженного конденсатора»

Назад в раздел «10-11 класс»

Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда —
Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля —
Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков —
Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов —
Электроемкость. Конденсаторы. Энергия заряженного конденсатора —
Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление —
Работа и мощность тока

Заключение

Если электрическое поле создаётся одновременно множеством электрических зарядов, то результативная (общая) напряженность «E» в определённой точке электрического поля находится как геометрическая сумма всех имеющихся напряженностей, созданных в данной точке каждым конкретным электрическим зарядом в отдельности.

Дополнительную информацию об электрическом поле можно узнать из файла Что такое электрическое поле. А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу. В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.tel-spb.ru

www.electrohobby.ru

www.electricalschool.info

www.selectelement.ru

www.tehinfor.ru

www.educon.by

Мне нравится1Не нравится

Предыдущая
ТеорияЧто такое заземление простыми словами
Следующая
ТеорияЧто такое коэффициент полезного действия (КПД) и как рассчитать его по формуле

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий