Измерение сопротивления изоляции электродвигателя

Изоляция токопроводящих жил

Для того чтобы свести к минимуму или существенно уменьшить появление подобного рода негативных ситуаций, токопроводящие жилы в кабелях защищают изолирующим покрытием из диэлектрического, не проводящего электрического тока, материала. Для создания изоляционных оболочек и покровов используют такие материалы, как резина, бумага и пластические массы, отдельно или в разных комбинациях. Изоляция для разных марок и видов кабелей существенно отличается как по применяемым материалам, так и по принципам использования изолирующих покровов. В настоящее время выпускается огромное количество кабельной продукции для всевозможного применения.

3.4.6

В одном контрольном кабеле допускается объединение
цепей управления, измерения, защиты и сигнализации постоянного и переменного
тока, а также силовых цепей, питающих электроприемники небольшой мощности
(например, электродвигатели задвижек).

Во избежание увеличения индуктивного сопротивления жил
кабелей разводку вторичных цепей трансформаторов тока и напряжения необходимо
выполнять так, чтобы сумма токов этих цепей в каждом кабеле была равна нулю в
любых режимах.

Допускается применение общих кабелей для цепей разных
присоединений, за исключением взаимно резервируемых.

3.4.5

Сечение жил кабелей и проводов должно удовлетворять
требованиям их защиты от КЗ без выдержки времени, допустимых длительных токов
согласно гл. 1.3, термической стойкости (для цепей, идущих от трансформаторов
тока), а также обеспечивать работу аппаратов в заданном классе точности. При
этом должны быть соблюдены следующие условия:

1. Трансформаторы тока совместно с электрическими цепями
должны работать в классе точности:

для расчетных счетчиков — по гл. 1,5;

для измерительных преобразователей мощности, используемых
для ввода информации в вычислительные устройства, — по гл. 1.5, как для
счетчиков технического учета;

для щитовых приборов и измерительных преобразователей тока
и мощности, используемых для всех видов измерений, — не ниже класса точности 3;

для защиты, как правило, в пределах 10%-ной погрешности
(см. также гл. 3.2.).

2. Для цепей напряжения потери напряжения от трансформатора
напряжения при условии включения всех защит и приборов должны составлять:

до расчетных счетчиков и измерительных преобразователей
мощности, используемых для ввода информации в вычислительные устройства, — не
более 0,5%;

до расчетных счетчиков межсистемных линий электропередачи —
не более 0,25%;

до счетчиков технического учета — не более 1,5%;

до щитовых приборов и датчиков мощности, используемых для
всех видов измерений, — не более 1,5%;

до панелей защиты и автоматики — не более 3% (см. также гл.
3.2.).

При совместном питании указанных нагрузок по общим жилам их
сечение должно быть выбрано по минимальной из допустимых норм потери
напряжения.

3. Для цепей оперативного тока потери напряжения от
источника питания должны составлять:

до панели устройства или до электромагнитов управления, не
имеющих форсировки, — не более 10% при наибольшем токе нагрузки;

до электромагнитов управления, имеющих трехкратную и
большую форсировку, — не более 25% при форсировочном значении тока.

4. Для цепей напряжения устройств АРВ потеря напряжения от
трансформатора напряжения до измерительного органа должна составлять не более
1%.

Сопротивление изоляции кабеля. Норма

Наша электролаборатория оказывает услуги проведения различных электротехнических измерений. Мы располагаем штатом квалифицированных специалистов и полным набором испытательного и измерительного оборудования. Наша аккредитация и сертификаты позволяют выдавать протоколы и акты установленного образца. Мы оперативно откликаемся на обращения наших клиентов, быстро и качественно выполняем заказы.

Существует множество ситуаций, когда требуется произвести измерение сопротивления изоляции кабельных линий. Одно дело, когда такие измерения проводятся собственным электротехническим персоналом предприятия или организации для того, чтобы убедиться в исправности кабельной линии. Совсем другое дело, когда на выходе должен появиться юридический документ, именуемый «протоколом проверки сопротивления изоляции проводов и кабелей».

Такой документ будет иметь юридическую силу только в случае, если его выдала электролаборатория прошедшая аккредитацию в уполномоченном государственном органе (Росаккредитация) и имеющая соответствующий аттестат. Например, такой протокол может затребовать энергоснабжающая организация в случае аварийного отключения кабельной линии перед повторным её включением.

Ещё протоколы предоставляются в органы Энергонадзора для приёмки в эксплуатацию вновь смонтированных или реконструируемых электроустановок, при подключении их к электросети энергоснабжающей организации. Требования ПТЭЭП предписывают производить замеры изоляции не реже одного раза в год. Такие протоколы должны хранится у лица ответственного за электрохозяйство. К ним очень «неравнодушны» пожарные инспектора.

Меры безопасности при проведении измерений

Организационные и технических мероприятия, обеспечивающие безопасность персонала во время измерений и испытаний кабельных линий, регламентируются «Правилами по охране труда» Эти правила определяют порядок оформления работ, состав бригады и квалификацию персонала производящего замеры и испытания в зависимости от категории электроустановки. Стоит заметить, что даже измерение изоляции кабельных линий и электропроводки 0.4 кВ с помощью мегомметра должны производить специалисты прошедшие обучение и имеющие соответствующую группу допуска по электробезопасности.

Нормы сопротивления изоляции

Параметры изоляции кабелей определяются требованиями пункта 1.8.40 ПУЭ (Правил устройства электроустановок). Для силовых кабелей, осветительных электропроводок, цепей вторичной коммутации до 1000 В. нормой являются 0.5 Мом и выше для каждой жилы кабеля между фазными проводами, по отношению к нулевому проводу и проводу защитного заземления.

Для кабельных линий напряжением выше 1000 В сопротивление не нормируется. Для определения соответствия нормам ПУЭ применяется другой параметр – ток утечки, измеряемый в миллиамперах. Испытания проводят на основе методик, утверждённых Ростехнадзором. Величина испытательного напряжения, величина допустимого тока утечки зависят от рабочего напряжения кабеля и типа его изоляции. Кратность испытательного напряжения зависит от рода тока испытательной установки. С помощью мегомметра можно только оценить качество изоляции высоковольтного кабеля.

Электрики в повседневной практике считают нормальной изоляцию в 1 Мом на каждый киловольт рабочего напряжения. Так сопротивление изоляции кабеля 10 кВ можно считать нормальным, если оно превышает 10 Мом измеренных мегомметром на 2.5 кВ.

Вам нужно провести измерения? Обращайтесь к нам!

Наша электролаборатория аккредитована и имеет свидетельство регистрации электролаборатории в Ростехнадзоре в установленном порядке и проводит все необходимые электротехнические измерения. Например, такие, как измерение сопротивления изоляции электропроводок и кабелей, измерение сопротивления цепи фаза-ноль, измерения связанные с сетью заземления.

Мы оказываем услуги клиентам, расположенным в Москве и Подмосковье. Сфера наших возможностей не ограничивается только измерениями. Еще мы занимаемся проектированием электроустановок и их ремонтом. Обо всем этом вы можете узнать на нашем сайте. Связавшись с нами, вы получите компетентные консультации по всем интересующим вас вопросам.

Периодичность замеров и их виды

Основополагающим документом, в котором говорится о сроках испытаний и электрических измерений, являются Правила технической эксплуатации электроустановок потребителей (ПТЭЭП). В соответствии с методическими указаниями данного документа, периодичность замеров сопротивления изоляции электропроводки устанавливается техническим руководителем потребителя энергоресурсов.

Определение сроков основывается на приложении 3 ПТЭЭП и должно учитывать:

  • инструкции завода-изготовителя (в том числе для изделий зарубежных производителей);
  • особенности местного климата;
  • профиль деятельности потребителя;
  • рабочее состояние установки.

Периодичность измерения, выбранная потребителем и указанная во внутреннем документе предприятия, должна быть не реже 1 раза в три года. Что касается планового контроля, то нормативным документом предусматривается 1 проверка в течение 3-х лет.

Внеплановые замеры проводятся при временном отсутствии функционирования системы защиты оборудования.

Согласно ПТЭЭП, в состав каждой утвержденной инспекторской комиссии  входят должностные лица лицензированных электроизмерительных организаций, зарегистрированных в федеральной службе Ростехнадзор.

Если организация оснащена значительным количеством электроустановок, то для предотвращения преждевременного сбоя в их работе рекомендуются регулярные текущий и капитальный ремонты. В течение этого времени изоляция электропроводки измеряется с периодичностью, согласно действующим нормам. Помимо измерений, связанных с ремонтными мероприятиями, 1 раз за полгода электротехническое оборудование подлежит обязательной проверке.

Если вводится в строй новый объект, то проводится ревизия электрооборудования (комплексные профилактические меры по недопущению аварийных ситуаций), согласно утвержденному план-графику, по окончании чего оформляется акт соответствия нормативной документации.

Ввод в эксплуатацию нового объекта

ПТЭЭП указывает перечень категорий установок и соответствующие сроки проведения замеров изоляционных материалов от 6 месяцев до трех лет.

По прошествии каждого полугодия

Раз в полгода электроизмерениям подвергаются объекты:

  • помещения с повышенной опасностью к возгоранию (склады с бензином и ГСМ; станции по производству и хранению дизельного топлива, водорода, ацетилена; мазутные котельные и т.п.);
  • передвижные мобильные установки, в их перечне трансформаторы и промышленные светильники;
  • сварочные аппараты;
  • генераторы.

В течение года единожды

Ежегодно электрика оборудования проходит контроль сопротивления изоляции на объектах и установках:

  • зданиях торговли;
  • уличном освещении;
  • объектах социальной значимости;
  • объектах общественного питания;
  • помещениях с повышенной опасностью поражения током (высокой влажностью, обогреваемыми полами, реальностью прикосновения к заземлению и установке в одно время);
  • стационарных электроплитах;
  • подъемно-транспортном оборудовании (лифтах и кранах);
  • электроинструменте (дрелях, шурупо,- и гайковертах, перфораторах, пилах, рубанках, шлифовальных машинах, лобзиках с электроприводом);
  • многоквартирных жилых домах.

На перечисленных объектах и оборудовании с аналогичной периодичностью проводится визуальный осмотр изоляции и следующие измерения:

  • сопротивление изоляционного покрытия;
  • переходные значения;
  • сопротивление цепи фаза-ноль;
  • устройство защитного отключения (для тока, превышающего допустимое значение, согласно техническим данным).

Периодичность замеров

Обратите внимание! Запрещается эксплуатация электрооборудования при нарушении сроков замера изоляции

Раз в два года

В течение каждых двух лет для электрооборудования с рабочим напряжением не более 1000 В при заземленном нейтральном проводе требуется контроль изоляции во время всех видов ремонтов.

Выполнение Правил эксплуатации электроустановок подразумевает один раз в 2 года при выполнении ремонтов проводить измерение полного сопротивления цепи фаза-ноль в установках, работающих в зоне повышенной взрывоопасности.

1 раз на протяжении 3-х лет

Согласно ПТЭЭП, с периодичностью в три года замеряются электропараметры:

  • жилых и административных многоэтажных зданий;
  • торговых точек;
  • небольших организаций, независимо от вида деятельности;
  • учреждений здравоохранения (некоторые виды замеров).

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В. Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса

Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания. При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Фото фигурок для сада

Прелестные  фигурки  для украшения садаПрелестные фигурки для украшения сада

Силовые кабельные линии

1.8.37. Силовые кабельные линии напряжением до 1 кВ испытываются по п. 1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по п. 1-3, 6, 7, 11, 13, напряжением 110 кВ и выше – в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целости и фазировки жил кабеля. Проверяются целость и совпадение обозначений фаз подключаемых жил кабеля.

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока. Силовые кабели выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Значения испытательного напряжения и длительность приложения нормированного испытательного напряжения приведены в табл. 1.8.42.

Таблица 1.8.42. Испытательное напряжение выпрямленного тока для силовых кабелей.

Изоляция и марка кабеля

Испытательное напряжение, кВ, для кабелей на рабочее напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

20

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

6

12

5

Пластмассовая

15

10

В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

4. Испытание повышенным напряжением промышленной частоты. Допускается производить для линий 110-220 кВ взамен испытания выпрямленным током; значение испытательного напряжения: для линий 110 кВ-220 кВ (130 кВ по отношению к земле); для линий 220 кВ-500 кВ (288 кВ по отношению к земле). Продолжительность приложения нормированного испытательного напряжения 5 мин.

5. Определение активного сопротивления жил. Производится для линий 35 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм2 сечения, 1 м длины и температуре +20 °C, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

6. Определение электрической рабочей емкости жил. Производится для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5%.

7. Измерение распределения тока по одножильным кабелям. Неравномерность в распределении токов на кабелях не должна быть более 10%.

8. Проверка защиты от блуждающих токов. Производится проверка действия установленных катодных защит.

9. Испытание на наличие нерастворенного воздуха (пропиточное испытание). Производится для маслонаполненных кабельных линий 110-220 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.

10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт. Производится для маслонаполненных кабельных линий 110-220 кВ.

Таблица 1.8.43. Предельные значения показателей качества масла кабельных линий.

Показатель масла

Нормы для масла марки

С-220

МН-3

Электрическая прочность, кВ/см, не менее

180

180

Тангенс угла диэлектрических потерь при +100°С, %, не более

0,005

0,008

Кислотное число, мг КОН на 1 г масла, не более

0,02

0,02

Степень дегазации, %, не более

0,5

1,0

11. Контроль состояния антикоррозийного покрытия. Производится для стального трубопровода маслонаполненных кабельных линий 110-220 кВ.

12. Проверка характеристик масла. Производится для маслонаполненных кабельных линий 110-220 кВ. Отбор проб следует производить из всех элементов линии. Пробы масла марки С-220, отбираемые через 3 сут. после заливки, должны удовлетворять требованиям табл. 1.8.43.

Пробы масла марки МН-3, отбираемые из линий низкого и высокого давления через 5 сут после заливки, должны удовлетворять требованиям табл. 1.8.43.

13. Измерение сопротивления заземления. Производится на линиях всех напряжений для концевых заделок, а на линиях 110-220 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

2.3.52

В четырехпроводных сетях должны применяться
четырехжильные кабели. Прокладка нулевых жил отдельно от фазных не допускается.
Допускается применение трехжильных силовых кабелей в алюминиевой оболочке
напряжением до 1 кВ с использованием их оболочки в качестве нулевого провода
(четвертой жилы) в четырехпроводных сетях переменного тока (осветительных,
силовых и смешанных) с глухозаземленной нейтралью, за исключением установок со
взрывоопасной средой и установок, в которых при нормальных условиях
эксплуатации ток в нулевом проводе составляет более 75% допустимого длительного
тока фазного провода.

Использование для указанной цели свинцовых оболочек
трехжильных силовых кабелей допускается лишь в реконструируемых городских
электрических сетях 220/127 и 380/220 В.

Схема измерения сопротивления изоляции двигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В. Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить

Все обмотки желательно отключить друг от друга для проверки изоляции между ними

Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение “мегаомы”;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около “0”;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания. При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт. При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт

При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Измерение сопротивления изоляции.

Сопротивление изоляции должно быть не менее значений,
приведенных в табл.1.8.34.

Таблица 1.8.34 Допустимые значения сопротивления изоляции

Испытуемый элемент Напряжение мегаомметра, В

Наименьшее допустимое значение сопротивления изоляции,
МОм

1.
Шины постоянного тока на щитах управления и в распределительных устройствах
(при отсоединенных цепях)

500-1000 10

2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и
разъединителей

500-1000 1

3.
Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения
машин постоянного тока, присоединенные к силовым цепям

500-1000 1

4.
Вторичные цепи и элементы при питании от отдельного источника или через
разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже

500 0,5

5.
Электропроводки, в том числе осветительные сети

1000 0,5

6.
Распределительные устройства, щиты и токопроводы (шинопроводы)

500-1000 0,5

_______________

 Измерение
производится со всеми присоединенными аппаратами (катушки приводов, контакторы,
пускатели, автоматические выключатели, реле, приборы, вторичные обмотки
трансформаторов тока и напряжения и т.п.).

 Должны
быть приняты меры для предотвращения повреждения устройств, в особенности
микроэлектронных и полупроводниковых элементов.

*
Сопротивление изоляции измеряется между каждым проводом и землей, а также между
каждыми двумя проводами.

________________

* Сноска  в таблице отсутствует. — Примечание
«КОДЕКС».

 Измеряется
сопротивление изоляции каждой секции распределительного устройства.

Сопротивление — изоляция — электродвигатель

Сопротивление изоляции электродвигателей и кабелей также должно периодически измеряться и удовлетворять нормам. Изоляция обмоток статоров должна испытываться на пробой переменным напряжением 1 000 в при номинальном напряжении электродвигателя 380 б и 1 500 в при номинальном напряжении 500 а. Электрическая прочность изо-ляции обмоток роторов и реостатов должна проверяться напряжением, равным полуторному номинальному напряжению переменного тока на кольцах электродвигателя, но не ниже 1 000 в. Длительность испытания во всех случаях 1 мин.

Сопротивление изоляции электродвигателя , измеренное между крепящими болтами и валом, а также между обмотками двигателя должно быть не менее 5 Мом.

Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мам для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя.

Сопротивление изоляции электродвигателей напряжением 3000 в и выше должно быть не ниже 1 Мом для обмоток статоров и 0 2 Мом для обмоток роторов. Помимо этого, измеряется коэффициент абсорбции, величина которого не нормируется. С помощью этого коэффициента определяются состояние изоляции и степень увлажненности обмоток двигателя.

Сопротивление изоляции электродвигателей с напряжением до 500 в должно быть не ниже 0 5 мом у статорных обмоток и 0 2 мом у роторных как по отношению к корпусу, так и между фазами.

Сопротивление изоляции электродвигателей напряжением до 1000 в должно быть не ниже 0 5 Мом.

Сопротивление изоляции электродвигателя должно быть не менее i ком на 1 в рабочего напряжения. Коэффициент абсорбции берется из отношения значений сопротивления изоляции при различной длительности приложения напряжения.

Сопротивление изоляции электродвигателей переменного тока до 1000 В проверяют мегаомметром на напряжение 1000 В. При этом измеряют сопротивление изоляции обмоток фаз статора относительно друг друга ( если выведены начала и концы обмоток всех трех фаз) и относительно корпуса. Если выведены только три конца обмотки статора, то сопротивление изоляции измеряют лишь относительно корпуса. У двигателей с фазным ротором производят также измерение сопротивления изоляции обмоток ротора на корпус и между обмотками статора и ротора. Величина сопротивления изоляции для электродвигателей до 1000 В Правилами не нормируется.

Испытывают сопротивление изоляции электродвигателя и при необходимости просушивают его.

Измерение сопротивления изоляции электродвигателя напряжением до 1000 в производится мегомметром на напряжение 1000 в после текущего и среднего ремонта, при этом сопротивление должно быть не ниже 0 5 ом. В случае резкого снижения сопротивления изоляции по сравнению с предыдущими замерами, необходимо выяснить причину и принять меры к его восстановлению.

Величина сопротивления изоляции электродвигателей не нормируется. Сопротивление изоляции каждой цепи автоматики и вторичной коммутации должно быть не ниже 1 Мом.

Величина сопротивления изоляции электродвигателей не нормируется.

Величипа сопротивления изоляции электродвигателей напряжением до 500 в не нормируется. Для двигателей напряжением 3000 в и выше сопротивление изоляции статора должно быть не менее 1 мегома, а ротора — 0 2 мегома.

При таких условиях сопротивление изоляции электродвигателей , кабелей, нагревателей компенсаторов объема и другого электротехнического оборудования снизится ниже разрешенного по техническим условиям из-за попадания влаги, поэтому после окончания дезактивации или срабатывания спринклерной установки необходимо измерять сопротивление изоляции указанного оборудования и кабелей.

Систематически должно проверяться сопротивление изоляции электродвигателей . Сопротивление изоляции при температуре 60 С должно быть: для статора — не менее 1 МОм / кВ, для ротора — не менее 0 5 МОм. Объем чистого воздуха, используемого для предварительной продувки должен быть не менее пятикратного суммарного объема корпуса электродвигателя, воздуховодов и фундаментной ямы. В двигателях с разомкнутым циклом вентиляции продувка осуществляется внешним вентилятором, а в двигателях с замкнутым циклом вентиляции для продувки используется вентилятор подпитки, поэтому при эксплуатации электродвигателя необходимо следить за состоянием и работоспособностью вентиляторов.

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Римские шторы

Грозы

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий