Основные причины изменения цвета пламени горения газа

Причины изменения цвета пламени

Газовое оборудование относится к небезопасным бытовым приборам. С одной стороны, пользователь не должен вмешиваться в его работу и нарушать конструкцию плиты, пытаться отремонтировать ее самостоятельно.

С другой – важно знать возможные признаки поломок и вовремя на них реагировать, чтобы не эксплуатировать варочную поверхность, которая вышла из строя

Один из самых простых признаков проблем в работе плиты является изменение окраски огня. В норме он синий, но иногда может становиться оранжевым, красным, желтым, иметь резкий и неприятный запах.

Важное условие для нормального сжигания газа – необходимое количество кислорода. Существует определенная пропорция, которую необходимо соблюдать, чтобы горение было максимально полезным для пользователя. Причины изменения цвета пламени:

Причины изменения цвета пламени:

  • неполное сгорание газа;
  • неправильное количество воздуха в смеси (недостаточное или избыточное);
  • загрязненность конфорок;
  • неподходящее оборудование;
  • некачественный газ.

Бытует мнение, что изменение цвета газа указывает на плохое качество поставляемого топлива. Якобы его разбавляют различными веществами, чтобы потребитель платил больше за услугу. На самом же деле, цвет огня указывает только на то, насколько правильно осуществляется процесс сгорания.

Так, однородный голубой цвет свидетельствует о полном сгорании газа с извлечением максимального количества тепла.

Но нельзя исключать и поставку некачественного газа. На сам цвет горения это не влияет, но некачественный газ в будущем ухудшает работу плиты и приводит к появлению желтого цвета пламени.

После работы плиты на ней может собираться черная сажа. Все это свидетельствует о том, что пламя коптит. Это указывает на нарушение инжекции газа. При работе конфорок ощущается нехватка газовой смеси. Вот почему газ иногда горит красным или желтым пламенем на плите.

Нужно искать причину прежде всего в загрязнении горелок, проблемах с вентиляцией и т. д. Чем выше температура горения, то есть, чем больше насыщен газ кислородом при горении, тем более холодный оттенок пламени.

Желтая окраска пламени

Топливовоздушная смесь становится непригодной и меняет свой цвет по разным причинам. Наиболее частая – забиваются отверстия, предназначенные для всасывания воздуха. В них попадает пыль, которая препятствует свободному проходу воздуха.

Особенно эта проблема актуальна в первые годы пользования газовым оборудованием. Именно тогда нужно чаще всего подвергать его проверке. Связано это с тем, что после штамповки на горелке и трубке запальной группы первое время сохраняется небольшая масляная пленка. Это приводит к налипанию пыли на ее поверхность, что препятствует попаданию нормального количества воздуха. Газ при этом проходит в прежнем количестве.

Меняется состав смеси, и это становится причиной, почему газ горит оранжевым или желтым цветом в плите, а не традиционным голубым или синим.

Важно понимать, что изменение окраски пламени – не единственный признак того, что плиту пора почистить. Другие показатели следующие:. Другие показатели следующие:

Другие показатели следующие:

  • пламя коптит;
  • огонь приобретает непрозрачный оттенок;
  • факел становится слишком большим;
  • факел становится светящимся.

Это все указывает на необходимость вызывать мастера, чтобы он почистил горелки, их различные элементы и отрегулировал работу плиты, чтобы воздух подавался равномерно.

Еще одна частая причина изменения цвета газового пламени на желтый – пребывание заслонки для регулирования подачи воздуха в неправильном положении. Она может быть закрытой, соскочить, упасть и т. д. Это вызывает недостаток воздуха, что приводит к потере нагрева, появлению копоти, желтому пламени и других проблем. Нередко это заканчивается даже необходимостью делать срочный ремонт плиты.

Пламя горит красным

Иногда газ может гореть даже красным цветом. Причиной такого явления служит избыток угарного газа, который накапливается как побочный продукт горения любого топлива. Если газ горит синим пламенем, значит, газовое оборудование полностью исправно и выделяет небольшое количество угарного газа.

Если же цвет меняется ближе к красному – этого ядовитого вещества становится все больше. Это довольно опасно, ведь чрезмерная концентрация приводит к головной боли, тошноте, головокружению и другим признакам отравления.

Проблема угарного газа в том, что он без запаха и цвета. Поэтому окраска пламени – единственный способ распознать увеличение его концентрации.

Даже небольшие концентрации этого вещества (0,01-0,2%) приводят к тяжелым симптомам.

Если концентрация газа достигнет больших величин, то это может вызвать более серьезные отравления и даже летальный исход.

Кальций

Кальций — элемент 4-го периода и ПА-группы Периодической системы, порядковый номер 20. Электронная формула атома 4s2, степени окисления +2 и 0. Относится к щелочноземельным металлам. Имеет низкую электроотрицательность (1,04), проявляет металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Многие соли кальция малорастворимы в воде. В природе — шестой по химической распространенности элемент (третий среди металлов), находится в связанном виде. Жизненно важный элемент для всех организмов.Недостаток кальция в почве восполняется внесением известковых удобрений (СаС03, СаО, цианамид кальция CaCN2 и др.). Кальций, катион кальция и его соединения окрашивают пламя газовой горелки в темно-оранжевый цвет (качественное обнаружение).

Кальций Са

Серебристо-белый металл, мягкий, пластичный. Во влажном воздухе тускнеет и покрывается пленкой из СаО и Са(ОН)2.Весьма реакционноспособный; воспламеняется при нагревании на воздухе, реагирует с водородом, хлором, серой и графитом:

Восстанавливает другие металлы из их оксидов (промышленно важный метод — кальцийтермия):

Получение кальция в промышленности:

Кальций применяется для удаления примесей неметаллов из металлических сплавов, как компонент легких и антифрикционных сплавов, для выделения редких металлов из их оксидов.

Оксид кальция СаО

Основный оксид. Техническое название негашёная известь. Белый, весьма гигроскопичный. Имеет ионное строение Ca2+ O2-. Тугоплавкий, термически устойчивый, летучий при прокаливании. Поглощает влагу и углекислый газ из воздуха. Энергично реагирует с водой (с высоким экзо-эффектом), образует сильно щелочной раствор (возможен осадок гидроксида), процесс называется гашение извести. Реагирует с кислотами, оксидами металлов и неметаллов. Применяется для синтеза других соединений кальция, в производстве Са(ОН)2, СаС2 и минеральных удобрений, как флюс в металлургии, катализатор в органическом синтезе, компонент вяжущих материалов в строительстве.

Уравнения важнейших реакций:

Получение СаО в промышленности — обжиг известняка (900-1200 °С):

СаСО3 = СаО + СО2

Гидроксид кальция Са(ОН)2

Основный гидроксид. Техническое название гашёная известь. Белый, гигроскопичный. Имеет ионное строение Са2+(ОН—)2. Разлагается при умеренном нагревании. Поглощает влагу и углекислый газ из воздуха. Малорастворим в холодной воде (образуется щелочной раствор), еще меньше — в кипящей воде. Прозрачный раствор (известковая вода) быстро мутнеет из-за выпадения осадка гидроксида (суспензию называют известковое молоко). Качественная реакция на ион Са2+ — пропускание углекислого газа через известковую воду с появлением осадка СаС03 и переходом его в раствор. Реагирует с кислотами и кислотными оксидами, вступает в реакции ионного обмена. Применяется в производстве стекла, белильной извести, известковых минеральных удобрений, для каустификации соды и умягчения пресной воды, а также для приготовления известковых строительных растворов — тестообразных смесей (песок + гашёная известь + вода), служащих связующим материалом для каменной и кирпичной кладки, отделки (оштукатуривания) стен и других строительных целей. Отвердевание («схватывание») таких растворов обусловлено поглощением углекислого газа из воздуха.

Уравнения важнейших реакций:

Получение Са(ОН)2 в промышленности — гашение извести СаО (см. выше).

Структурные превращения в сварном шве и околошовной зоне

Под воздействием теплоты пламени горелки происходят расплавление металла сварочной ванны и нагрев основного металла, примыкающего к ее границам. Та часть основного металла, структура которого изменяется при нагреве, называется зоной термического влияния (ЗТВ) или околошовной зоной.

Рис. 7. Схема сварного соединения: 1 — шов; 2 — зона термического влияния; 3 — основной металл

Различные участки ЗТВ подвергаются нагреву от температуры, близкой к температуре плавления (вблизи границы сварочной ванны), до температуры начала структурных превращений (около границы основного металла, не подвергшегося нагреву).

Сварное соединение (рис. 7) состоит из шва 1, образовавшегося в результате кристаллизации сварочной ванны, ЗТВ 2 и основного металла 3, не подвергшегося воздействию нагрева. В зависимости от характера структурных изменений ЗТВ можно разделить на отдельные участки (рис. 8).

Рис. 8. Схема строения зоны термического влияния при газовой сварке низкоуглеродистой стали: I — участок неполного расплавления; II — участок перегрева; III — участок нормализации; IV — участок неполной перекристаллизации; V — участок рекристаллизации; VI — участок синеломкости

Рядом со швом расположен участок неполного расплавления (граница сплавления). За ним идет участок перегрева (участок полной перекристаллизации), на котором металл нагревается до температуры образования жидкой фазы. Этот участок характеризуется крупнозернистой структурой и при газовой сварке имеет значительную протяженность около 21 … 23 мм от границы шва. Далее следует участок нормализации, который имеет протяженность порядка 4 … 5 мм. За ним следует участок неполной (частичной) перекристаллизации, переходящий в основной металл. Протяженность участка неполной перекристаллизации составляет 2 … 3 мм, а суммарная протяженность ЗТВ при газовой сварке стали составляет в среднем 27 … 30 мм.

Увеличение номера наконечника горелки приводит к увеличению протяженности ЗТВ. При увеличении скорости сварки размеры ЗТВ уменьшаются.

Гори синим пламенем

Еще один способ повышения экологической чистоты пиротехники — разработка добавок, которые снижают нежелательные выбросы продуктов горения пиротехники в окружающую среду. Первыми кандидатами на замену оказались хлорид меди (компонент синих огней) и соединения бария, придающие пламени зеленую окраску.

Обычно пиротехнические составы, дающие светло-голубое пламя, получают, используя металлическую медь или медьсодержащие вещества в комбинации с источником хлора. Принцип действия составов основан на том, что при высокой температуре хлор реагирует с медью, образуя хлорид меди (I). Другими способами получить полноценное голубое пламя очень сложно. Тот же Томас Клапотке в сотрудничестве с Джессом Сабатини, работающим в подразделении пиротехнических составов Армии США, смог получить смесь химических веществ без хлора, которая горит светло-голубым пламенем (Angewandte Chemie Int. Ed., 2014, 53, 36, 9665–9668, doi: 10.1002/anie.201405195).

Новая пиротехническая смесь содержит иодид меди (I), который горит почти таким же красивым голубым цветом, как хлорид. Помимо того что CuI экологичнее существующих пиротехнических составов, новый состав дает более чистый цвет, чем традиционные комбинации веществ, которые применяют в пиротехнике.

Джесс Сабатини также обнаружил, что при использовании в фейерверках карбида бора получается такая же зеленая окраска, какую дают применяющиеся сегодня производные бария (Angewandte Chemie Int. Ed., 2011; 50, 20, 4624–4626, doi:10.1002/anie.201007827). Работа началась с того, что руководство Армии США заказало ему разработку аналога дешевой ручной сигнальной ракеты зеленого пламени M125A1, которая в основном состоит из смеси нитрата бария с поливинилхлоридом. Аналог сигнальной ракеты не должен был содержать бария.

В поисках кандидатов на новый пиротехнический состав без бария и хлора исследователи обратили внимание на бор. Порошок аморфного бора сгорает зеленым пламенем с образованием оксида бора, но это происходит слишком быстро, чтобы применять его в пиротехнических составах

Исследователи обнаружили, что скорость горения можно замедлить, если добавить к аморфному бору другую аллотропную модификацию — кристаллический бор, однако он слишком дорог.

Исследователи решили провести скрининг «экзотических» производных бора. В ставших уже классикой химических статьях 1950–1960-х годов Сабатини с соавторами обнаружили информацию о том, что карбид бора, крайне химически инертный при комнатной температуре, становится активным при повышенной. Добавление карбида бора в аморфный бор значительно увеличило время горения пиротехнического состава, но оказалось, что наиболее эффективным временем горения отличается чистый B4C. Эти результаты удивили всех коллег Сабатини по пиротехнике: ведь когда-то именно химическая инертность карбида бора привела к тому, что его не рассматривали как возможный компонент.

Пиротехники XXI века работают и над инициирующими взрывчатыми веществами. Военные и полицейские боеприпасы сегодня содержат довольно много токсичного азида и тринитрорезорцината свинца, инициирующих детонацию. Кроме того, их применяют и в детонаторах, которые используют в ходе горных разработок. Только в США ежегодно производится около 10 млн тонн таких устройств, из-за этого в окружающую среду попадает около 350 килограммов свинца в год. Такая же проблема и на армейских стрельбищах: концентрация свинца в подобных местах очень высока, он накапливается там десятилетиями, что не способствует здоровью военнослужащих, равно как и гражданского персонала. Надо отметить, что оба инициирующих взрывчатых вещества — азид и тринитрорезорцинат свинца — отличаются высокой канцерогенностью и тератогенностью.

Клапотке удалось найти первичное взрывчатое вещество, не содержащее свинца или других опасных для окружающей среды тяжелых металлов (Angewandte Chemie Int. Ed., 2014, 53, 31, 8172–8175, doi: 10.1002/anie.201404790). Единственный металл, присутствующий в новом веществе — 1,1′-динитрамино-5,5′-бистетразоляте калия (K2DNABT), — это калий. Он безвреден и для человека, и для окружающей среды. Новое взрывчатое вещество устойчиво по отношению к ударам, трению и статическому электричеству примерно в такой же степени, как и азид свинца.

Еще одно направление повышения экологичности фейерверков и пиротехники — замена сгорающего с образованием целого букета вредной хлорорганики полихлорвинила на менее опасные связующие материалы. Возможно, его место займут популярные в настоящее время металлоорганические каркасные структуры ().

Профилактика и исключение возникновения дефекта

Следует внимательно выбирать газовое оборудование, чтобы не купить в квартиру с централизованным газоснабжением плиту или бойлер, рассчитанные на работу с пропаном.

Есть и другие рекомендации.

Изучение правил эксплуатации

Для безопасности жильцов можно установить датчик угарного газа

Бытовые газовые приборы обычно устроены просто, однако необходимо изучить инструкцию по эксплуатации и тщательно выполнять правила безопасности:

  • Самостоятельно газифицировать дом или устанавливать газовые аппараты запрещено.
  • Ни в коем случае нельзя заклеивать, переносить или перекрывать вентиляционные шахты, карманы дымоходов, люки для чистки.
  • Запрещается включать газовые приборы, если нет тяги в дымоходе, отсутствует вытяжная вентиляция или закрыты окна.
  • Нельзя оставлять без внимания работающие приборы, за исключением тех, что работают круглосуточно и оборудованы автоматикой безопасности.
  • Запрещается пользоваться газом детям до 14 лет, недееспособным и людям в состоянии изменения сознания: находящимся в наркотическом или алкогольном опьянении, под действием психотропных лекарств.
  • Нельзя нагружать трубы газопровода – сушить вещи, крепить к ним веревки для сушки и прочее.
  • При появлении запаха газа нужно немедленно отключить все газовые приборы, перекрыть краны, открыть все окна в квартире, покинуть помещение. Необходимо позвонить в аварийную газовую службу.

Для разных приборов есть особые рекомендации. Например, если в горелке газовой плиты отрываются язычки пламени или цвет изменился на оранжевый или красный, нужно отключить печку и вызвать газовщика. Газовую колонку можно включать только при наличии тяги. Проверку делают дважды: до включения и после. Перед включением котла для этого нужно открыть шибер-заслонку дымохода.

Уход за прибором

Внутренние детали плиты разрешается чистить только специалистам газового хозяйства

За нормальную работу газовых приборов отвечает владелец жилища. На практике это означает тесное сотрудничество с представителями газовых компаний, так как самостоятельно ремонтировать или проводить техосмотр оборудования запрещается.

Правила следующие:

  • Поверхность газовых приборов следует периодически очищать. При попадании пыли в горелку ухудшается подача кислорода и метан горит неэффективно.
  • Газовые баллоны заправлять следует только в специализированных пунктах.
  • После подсоединения нового баллона необходимо проверить герметичность подключения: нанести на эти участки мыльный раствор.
  • Точно следовать инструкции, не допускать перегрева прибора.
  • Установку, наладку, техосмотр, ремонт газового оборудования выполняют только сотрудники газовой компании. Обязанность владельца – своевременно сообщать о неполадках, если таковые есть, и обеспечивать доступ к приборам.

Очищать допускается только внешние детали. Разобрать и прочистить горелку может только квалифицированный газовщик.

При неисправности обращаться к специалистам

При возникновении подозрительного свиста, запаха газа, при изменении цвета огня, при затухании, отсутствии тяги и других случаях приборы отключают, перекрывают подачу газа и немедленно звонят специалистам.

Если поломка не сопровождается утечкой газа, звонят сотрудникам газовой компании, обслуживающей квартиру или дом. Если в жилище появился запаха газа, обращаются в аварийную службу и дублируют звонок пожарным.

Примечания[ | ]

  1. Журнал «Популярная механика» Выпуск 106 август 2011. стр. 18
  2. Kirshenbaum, A. D.; A. V. Grosse (May 1956). «The Combustion of Carbon Subnitride, NC4N, and a Chemical Method for the Production of Continuous Temperatures in the Range of 5000–6000°K». Journal of the American Chemical Society. 78 (9): 2020. doi:10.1021/ja01590a075
  3. Thomas, N.; Gaydon, A. G.; Brewer, L. (1952). «Cyanogen Flames and the Dissociation Energy of N2». The Journal of Chemical Physics. 20 (3): 369–374. Bibcode:1952JChPh..20..369T. doi:10.1063/1.1700426.
Для улучшения этой статьи желательно:
  • Проставив сноски, внести более точные указания на источники.
  • Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.

Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

Желтый или оранжевый огонь

Скорее всего, пламя таких цветов периодически видят владельцы любых газовых плит, однако проблема быстро пропадает сама по себе, вот хозяева и не переживают. Правда, случается и такое, что проблема приобретает постоянный характер, и тогда владельцы могут забеспокоиться.

На самом-то деле проблема не столь критичная, и, скорее всего, решить ее можно даже самостоятельно. Чаще всего она наблюдается на новых плитах, купленных не более года назад, однако это не показатель низкого качества кухонной техники – явление наблюдается и на дешевых китайских устройствах, и на дорогих образцах именитых брендов. Проблема состоит в том, что для любого процесса горения необходим обильный доступ воздуха, а в этом случае отверстия для его всасывания засорены, потому его поступает недостаточно.

У новых плит такая проблема связана с тем, что для предотвращения окисления их детали во время хранения на складе покрывают тонкой пленкой из масла, на которое прекрасно садится мелкая пыль. Поскольку отверстия для подачи воздуха довольно маленькие, такая грязь может закрыть существенную часть просвета и спровоцировать характерный рыжий оттенок пламени. В течение первого года эксплуатации проблема обычно устраняется – масло подсыхает, часть сора сгорает, а если хороший хозяин еще и регулярно чистит плиту, то проблемы вообще быстро сойдут на нет.

Кстати, причиной изменения цвета горения может стать и смещение заслонки, расположенной на конфорке. У некоторых производителей ее форма недостаточно продумана, потому ее падение или частичное смещение может частично перекрыть доступ воздуха к месту горения.

Еще одна причина такого явления – то, что в системах может использоваться разный газ. Природный газ и пропан имеют разные температуры горения, и количество воздуха им тоже нужно разное, потому при покупке плиты возможна ситуация, когда техника рассчитана на другой вид топлива. Тут уж вы ничего не исправите – из-за несовместимости конфорки всегда будут гореть оранжевым.

В большинстве случаев небольшие засорения – проблема не столь страшная, но если явление приобретает постоянный характер, опасность может возрасти. Из-за недостатка воздуха слабое пламя может просто погаснуть. Чаще всего оно гаснет в духовке, куда воздуху попасть трудно, и вы ведь даже не сразу это заметите. При этом включенный, но не горящий газ, начнет скапливаться в помещении, и при самом худшем развитии событий может спровоцировать взрыв, способный разнести весь подъезд.

Науглероживающий вид сварочного пламени

Если в сварочной горелке соотношение кислорода к ацетилену меньше 1, формируется науглероживающее сварочное пламя. Ядро такого пламени не имеет резкого контура, а вершина ядра окрашивается в зелёный цвет, который свидетельствует об избыточном количестве ацетилена.

Восстановительная зона в таком пламени светлее, чем в нормальном пламени, а факел имеет жёлтую окраску. Не видно чёткой границы между зонами. Излишки ацетилена распадаются на углерод и водород. Углерод легко переходит в сварочную ванну, поэтому, науглероживающее пламя используют, если есть необходимость науглероживания металла сварного шва или для восполнения углерода, если при сварке происходит его угар. Такое пламя хорошо подходит для газовой сварки чугуна.

Цветовая характеристика

Излучения различных вызывается электронными переходами. Их еще называют тепловыми. Так, в результате горения углеводородного компонента в воздушной среде, синее пламя обусловлено выделением соединения H-C. А при излучении частичек C-C, факел окрашивается в оранжево-красный цвет.

Трудно рассмотреть строение пламени, химия которого включает соединения воды, углекислого и угарного газа, связь OH. Его языки практически бесцветны, так как вышеуказанные частички при горении выделяют излучения ультрафиолетового и инфракрасного спектра.

Окраска пламени взаимосвязана с температурными показателями, с наличием в нем ионных частиц, которые относятся к определенному эмиссионному или оптическому спектру. Так, горение некоторых элементов приводит к изменению цвета огня в горелке. Отличия в окрашивании факела связаны с расположением элементов в разных группах системы периодической.

Огонь на наличие излучений, относящихся к видимому спектру, изучают спектроскопом. При этом было установлено, что простые вещества из общей подгруппы оказывают и подобное окрашивание пламени. Для наглядности используют горение натрия в качестве теста на данный металл. При внесении его в пламя, языки становятся ярко-желтыми. На основании цветовых характеристик выделяют натриевую линию в эмиссионном спектре.

Для характерно свойство быстрого возбуждения светового излучения атомарных частиц. При внесении труднолетучих соединений таких элементов в огонь горелки Бунзена происходит его окрашивание.

Спектроскопическое исследование показывает характерные линии в области, видимой для глаза человека. Быстрота возбуждения светового излучения и простое спектральное строение тесно взаимосвязаны с высокой электроположительной характеристикой данных металлов.

Химия взрыва

Современная пиротехника — это не только фейерверки, а еще и автомобильные подушки безопасности, ракетное топливо, сигнальные ракеты военного и гражданского назначения. Конкретная область применения состава диктует необходимость введения добавок, отвечающих либо за увеличение объема продуктов сгорания, либо за особо яркое и окрашенное пламя. Существуют добавки, которые создают звуковые сигналы (многие помнят шутку из «сборника армейских маразмов» про «сигнал к атаке — три зеленых свистка вверх»; на самом деле ничего особенно смешного командир не сказал), другие дают густой и устойчивый сигнальный дым или дымовую завесу. Естественно, что при взрыве пиротехнического изделия высвобождается коктейль ядовитых соединений, опасных для человека и для окружающей среды: тяжелые металлы, хлораты и диоксины, аэрозоли дымов, моноксид углерода, оксиды серы (Angewandte Chemie Int. Ed., 2008, 47, 18, 3330–3347, doi: 10.1002/anie.200704510).

Жизнь требует создания новых пиротехнических составов с новыми «спецэффектами», а с другой стороны, они должны быть безопасными для окружающей среды. Именно поэтому сегодня ситуация с химией и пиротехникой изменилась. Если примерно до середины XIX века открытие нового взрывчатого вещества или состава влекло за собой новые открытия в химии и других естественных науках (пиротехника была одним из локомотивов химического прогресса), то сейчас действует обратная причинно-следственная связь. Наши представления о строении и свойствах веществ, наши знания о химии мы используем для рационального создания пиротехнических составов, в первую очередь таких, которые оказывают минимальное воздействие на окружающую среду.

Очевидно, что один из способов решения экологических проблем — это простая оптимизация горения пиротехники, чтобы не оставалось продуктов неполного сгорания. В идеале при вспышке должны образоваться только вода и диоксид углерода, до которых окислятся органические вещества, входящие в состав пиротехнической смеси, а если топливом служит металл, то также и оксиды металлов (MgO, Al2O3). Способность пиротехнического состава к полному сгоранию за счет внутренних ресурсов окислителя оценивают через кислородный баланс. Что это такое?

Кислородный баланс взрывчатого вещества или пиротехнической смеси положительный, если общего количества связанного кислорода, входящего в его состав, хватает до полного сгорания смеси до углекислого газа, воды и оксидов металлов, и кислород даже остается в избытке, выделяясь в виде простого вещества. Если же кислорода в составе пиротехники не хватает до образования продуктов полного сгорания, а продукты неполного сгорания догорают в атмосферном кислороде, то кислородный баланс отрицательный. Гипотетически можно предположить и существование нулевого кислородного баланса (весь кислород пиротехнического состава ушел на его полное сгорание, избыточного кислорода не осталось), однако на практике так подгадать вряд ли удастся. К тому же пиротехнические изделия одной партии могут незначительно отличаться по составу, поскольку не всегда удается добиться равномерного перемешивания окислителя, связующего и топлива. Поэтому производители пиротехники, насколько возможно, стараются выдерживать положительный кислородный баланс. Для органического вещества, состоящего только из углерода, водорода, азота и кислорода, состава CaHbNcOd кислородный баланс вычисляется по формуле:

ОБ, % = (d − 2a − b/2) / M(CaHbNcOd) · 1600.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий