Оксид азота(ii)

Синтез NO

NO продуцируется во всех тканях, и считается, что его местное производство определяет физиологические действия.

Ферментативный синтез NO

NO синтезируется из L-аргинина с помощью NO-синтазы (NOS) в две отдельные стадии монооксигенации в результате которых образуются цитруллин и NO.

Фермент NOS имеет три кодирующиеся разными генами изоформы:

  • нейрональную;
  • индуцибельную;
  • эндотелиальную.

Неферментативный синтез NO

Неферментативное производство NO происходит за счет одноэлектронного восстановления нитрита и значительно ускоряется в условиях гипоксии. Средняя скорость образования NO у людей составляет около 1 ммоль/день.

Общее описание

Азот – это бесцветный двухатомный газ (N2). Атомы в молекуле азота удерживает прочная тройная связь, что обуславливает инертность элемента. Азот реагирует с другими элементами и соединениями под действием внешних факторов – высокой температуры, электричества, катализаторов.

Рис. 1. Строение молекулы азота.

Оксиды образуются из солей аммония и азотной кислоты. Формулы оксидов азота и краткая характеристика соединений приведены в таблице.

Название

Формула

Получение

Особенности

Оксид диазота или оксид азота (I) – «веселящий газ»

N2O

– Нагревание нитрата аммония (опасность взрыва): NH4NO3 → N2O + 2H2O;

– нагревание аминосульфоновой кислоты с разбавленной азотной кислотой: NH2SO2OH + HNO3 → N2O + H2SO4 + H2O

Бесцветный газ со сладковатым привкусом. Не горит, токсичен. Растворим в воде, серной кислота, спирте

Монооксид или оксид азота (II)

NO

Единственный оксид, получаемый непосредственным взаимодействием кислорода и азота при температуре 1200°С или при электрических разрядах: N2 + O2 → 2NO

Бесцветный ядовитый газ. На воздухе окисляется, приобретая коричневый цвет. Трудно сжижается. В жидком виде имеет голубой цвет

Триоксид диазота или оксид азота (III)

N2O3

При взаимодействии разбавленной азотной кислоты и твёрдого оксида мышьяка с последующим охлаждением:

– 2HNO3 + As2O3 → NO2 + NO + 2HAsO3;

– NO2 + NO → N2O3

При нормальных условиях – синяя жидкость. Может приобретать газообразное и твёрдое состояния. Сильно токсичен, вызывает ожоги кожи

Диоксид или оксид азота (IV)

NO2

– При взаимодействии азотной кислоты и меди: Cu + 4HNO3 → Cu(NO3)2 + 2NO2 + 2H2O;

– при разложении нитрата свинца: 2Pb(NO3)2 → 2PbO + 4NO2 + O2

Ядовитый газ бурого цвета с острым запахом. Легко сжижается при температуре ниже +21°С, превращаясь в желтоватую жидкость

Пентаоксид диазота или оксид азота (V)

N2O5

– Дегидратация азотной кислоты в присутствии оксида фосфора: 2HNO3 + P2O5 → 2HPO3 + N2O5;

– взаимодействие хлора и нитрата серебра: 4AgNO3 + 2Cl2 → 4AgCl + 2N2O5 + O2;

– реакция оксида азота (IV) и озона: 2NO2 + O3 → N2O5 + O2

Бесцветное твёрдое кристаллическое соединение, крайне неустойчивое при нормальных условиях. Приобретает стабильную форму при температуре ниже +10°C

Рис. 2. Диоксид или оксид азота (IV).

Помимо пяти стабильных оксидов азота известны ещё пять нестабильных соединений – NON3, NO2N3, N(NO2)3, нитратный радикал NO3 и димер, состоящий из двух простых молекул, диоксида азота (N2O4).

Оксиды: классификация, получение и химические свойства

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых —  кислород со степенью окисления -2.  При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды , образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Химические свойства основных оксидов.

Химические свойства основных и кислотных оксидовХимические свойства основных и кислотных оксидов

Химические свойства кислотных оксидов.

Химические свойства основных и кислотных оксидовХимические свойства основных и кислотных оксидов

Химические свойства амфотерных оксидов.

Последствия злоупотребления веселящего газа

Даже небольшая доза вещества способна спровоцировать развитие психических заболеваний, проблемы с сердечно-сосудистой системой, бесплодие. Находясь под действием закиси азота, человек подвергает свое здоровье серьезным рискам.

  • Происходит сильнейшая интоксикация организма. Ее негативные проявления в первую очередь затрагивают мыслительную деятельность, угнетают зрение, затрудняют работу мышц;
  • На клеточном уровне вредное влияние проявляется в анемии крови. Человек испытывает слабость, быстро утомляется;
  • Дефицит кислорода вызывает гипоксию, что отражается на нарушении функций сердца, центральной нервной системы, почек, печени;
  • Действие закиси азота проявляется в нарушении координации движений. Человек качается и падает, получая ссадины, ушибы, травмы;
  • При регулярном употреблении развивается органический синдром: возникают проблемы с памятью, интеллектом. Человек утрачивает способность к обучению, общению с окружающими.
  • Вследствие угнетения дыхания может возникнуть асфиксия;
  • Если немедицинскую закись азота употребляет беременная женщина, это может спровоцировать уродство плода
  • При систематическом употреблении закиси азота в неразбавленном виде формируется психологическая зависимость.

На данный момент вещество не относится к запрещенным и остается в свободной продаже. Его низкая стоимость по сравнению с другими психоактивными веществами делает его чрезвычайно привлекательным для желающих получить опьянение.

Биологическая значимость

Структура

Оксид азота (в дальнейшем NO – изображен ниже) представляет собой небольшую сигнальную молекулу, синтезирующуюся из аминокислоты L-аргинина за счет семейства синтетаз оксида азота, включающих eNOS (эндотелиальная, NOS-III), iNOS (индуцибельная, NOS-II) и nNOS (нейрональная, NOS-I). Данное семейство ферментов действует в качестве димеров совместно с множеством кофакторов, включая тетрагидробиоптерин, флавин аденин динуклеотид (FAD), флавин мононуклеотид (FMN), железо и цинк. В то время как регулирование и модулирование каждой изоформы значительно различается, все изоформы ускоряют реакцию L-аргинина с НАДФН и кислородом для получения NO, цитруллина и НАДФ (Ноульс и Монкада (1994); Марлетта (1994).

Как оксид азота передает сигнал

Объяснение действия оксида азота в качестве сигнальной молекулы газа привело к присуждению Нобелевской премии по психологии/медицине в 1998 г., так как было впервые выявлено, что молекула газа вырабатывается одной клеткой, немедленно переносится в другие клетки и затем действует в качестве сигнальной молекулы в клетках. Например, NO, вырабатываемый eNOS в эндотелиальных клетках, переносится в прилежащие гладкомышечные клетки, где дает начало каскаду реакций за счет активации растворимой гуанилат циклазы, которая ускоряет выработку циклического ГМФ . Рост уровня цГМФ вызывает активацию протеинкиназы G (PKG), которая в свою очередь фосфорилирует фосфатазы легких цепей миозина (MLC) (таким образом, активируя их). В свою очередь, активированная MLC фосфатаза дефосфорилирует MLC, что приводит к расслаблению гладкомышечных клеток и, таким образом, расслаблению сосудов.
Оксид азота передает сигнал посредством стимулирования своего рецептора, рецептора растворимой гуанилил циклазы и повышения клеточного уровня сигнальной молекулы под названием циклический гуанидин монофосфат (цГМФ).
Дополнительные участники регуляции сосудистого тонуса включают семейство фосфодиэстераз (ФДЭ 1 – 11), которые ускоряют гидролиз цГМФ в 3’ конечный продукт , эффективно останавливая обусловленное NO расслабление сосудов. В связи с ограниченной регуляцией выработки eNOS и NO, затруднительно модулировать расслабление сосудов за счет влияния на активность eNOS.
В связи с физиологической значимостью ФДЭ в контролировании уровня цГМФ, они становятся популярной мишенью, когда дело касается расслабления сосудов и кровотока. Приемры включают препараты, такие как Виагра, Сиалис и Левитра, все из которых ингибируют ФДЭ-5, которая в особенности выражена в гладкомышечных клетках в пещеристом теле пениса. Поскольку ингибирование этих ферментов ведет к аккумулированию цГМФ, становится существенно возможным усиление расслабляющего сосуды действия NO.
Фосфодиэстеразы представляют собой отрицательные регуляторы цГМФ и цАМФ (они гидролизируют данные молекулы). В то время как не все ферменты ФДЭ могут быть нацелены на вызванное цГМФ действие NO на гуанилат циклазу, небольшое их число обладает способностью контролировать передачу сигнала NO посредством разрушения ключевой сигнальной молекулы-посредника (цГМФ).

Окислительный потенциал

NO теоретически может распадаться в молекулу, известную как пероксинитрат (OONO-), которая представляет собой результат реакции NO с супероксид-анионами (O2-). OONO- также действует в качестве реактивной сигнальной молекулы, хотя конечным результатом является образование некоторых структур, которые носят отрицательный характер для организма; OONO- может нитрозилироваться (передавать азотную группу) в отношении аминокислот с целью образования таких соединений, как 3-нитротирозин или S-нитрозоцистеин, образования карбонилов белков или нитрозилирования фосфолипидов, содержащих полиненасыщенные жирные кислоты (PUFA). В этом смысле оксид азота может использоваться в качестве субстрата супероксидом с целью образования реактивных соединений, которые оказывают отрицательное влияние на состояние здоровья, несмотря на то, что NO сравнительно благоприятен для организма.
Оксид азота может трансформироваться (посредством соединения с радикалами супероксида) в форму пероксинитрата, который затем может образовывать множество молекул, которые связываются с нездоровым состоянием и предположительно имеют отношение к патологиям.

Фармакология

Добавочный оксид азота

NO, который синтезируется в организме и впоследствии высвобождается в кровь, имеет период полувыведения в 5 секунд или меньше, при этом в лабораторных условиях могут создаваться некоторые комплексы для увеличения периода полувыведения до 445 с или около того в целях исследования. Эти короткие периоды полувыведения свидетельствуют о быстром распаде молекулы оксида азота на составляющие (азот и кислород), при этом надлежащее хранение NO может увеличивать срок хранения, как было подтверждено, только до 5 дней, при использовании майларовых баллонов, которые замедляют разрушение. В связи с низкой устойчивостью вне организма, оксид азота по существу никогда не используется в качестве добавки, скорее используются соединения, которые могут сохраняться в крови на протяжении времени, достаточного для непрерывной выработки нового NO.
Оксид азота по существу неустойчив и имеет короткий период полувыведения; он оказывает полезное действие немедленно, но не имеет значения в качестве добавки и сам по себе. Добавка NO требует других соединений, которые оказывают влияние на внутреннюю систему выработки оксида азота.

Что такое оксид азота

Оксид азота представляет собой оксид азота, имеющий химическую формулу NO. Здесь один атом азота связан с атомом кислорода посредством ковалентной связи. Это означает, что атом азота и атом кислорода делят свои неспаренные электроны. При комнатной температуре и давлении оксид азота является токсичным бесцветным газом.

Рисунок 1: Структура точки Льюиса для оксида азота

Молярная масса этого соединения составляет 30 г / моль. Температура плавления оксида азота составляет -164 ° С, а температура кипения составляет -152 ° С. Молекула оксида азота имеет линейную форму, потому что только два атома связаны друг с другом. Когда неспаренные электроны азота и кислорода делятся, на атоме азота появляется еще один неспаренный электрон. Но на атоме кислорода нет других неспаренных электронов, которыми можно поделиться. Тогда неспаренный электрон делится один на два атома. Следовательно, фактическая структура ковалентной связи находится между двойной связью и тройной связью. Тогда длина связи составляет 115 мкм, что является меньшим расстоянием между двумя атомами, чем ожидаемое значение.

Рисунок 2: Фактическая связь между азотом и кислородом в оксиде азота

Оксид азота может образовывать диоксид азота в присутствии кислорода. Но в воде оксид азота реагирует с кислородом и Н2O с образованием азотистой кислоты (HNO2). Когда этот газ охлаждается, он образует димеры оксида азота (N2О2). Это некоторые основные реакции оксида азота.

Степень окисления азота в оксиде азота составляет +2. Это связано с тем, что степень окисления кислорода равна -2, а поскольку молекула закиси азота является нейтральным соединением, степень окисления азота должна составлять +2.

Получение

Промышленный метод

В промышленных масштабах синтез оксида азота (II) является одной из стадий в получении азотной кислоты. Его получают окислением аммиака кислородом воздуха в присутствии катализаторов:

Количество преобразованного в NO аммиака составляет примерно 93-98%. Другими, побочными, реакциями является образование азота и оксида азота (I):

Кроме этого, может происходить частичное разложение конечного продукта, NO, а также его взаимодействие с аммиаком:

Согласно одной из самых распространенных теорий механизма окисления, предложенной Максом Боденштейном, аммиак окисляется атомарным кислородом, адсорбированным на катализаторе с образованием гидроксиламина, который постепенно разлагается с образованием NO:

Основными применяемыми катализаторами являются платина и, в меньшей степени, родий и палладий. Несмотря на их высокую стоимость, они имеют преимущество в высшем выходе реакции и меньшей склонности к отравлению.

Лабораторные методы

В лабораториях монооксид азота обычно добывают взаимодействием разбавленной азотной кислоты с медью при некотором нагревании по реакции:

Применяются также реакции восстановления нитритов в разведенной серной кислоте:

Полученный такими методами NO может быть загрязнен примесями (прежде всего, N 2 O), поэтому он требует дополнительной очистки.

Повышение уровня NO

Ок, а как повысить концентрацию NO? Тут всё очевидно,  НУЖНЫ ДОНАТОРЫ АЗОТА. И сразу же на ум приходит АРГИНИН, ведь в большинстве донаторов встречается именно он.

Так же считается, что аргинин способствует увеличению мышечной массы и сокращению жировых отложений при оптимальной нагрузке.

Т.е. всё вроде бы понятно. Хочешь увеличить концентрацию оксида азота – кушай аргинин! Не торопитесь, друзья. Тут как раз мы с вами наблюдаем маркетинг во всей своей красе.

Почему аргинин?

Ребят, дело в том, что в Соединённых штатах учёные искали вещество, которое отвечает за поддержание работы кровеносных сосудов и кровеносной системы человека.

Через какое-то время они нашли это вещество и поскольку решили, что это обычная молекула белка назвали его EDRF (фактор расслабляющий эндотелий). Но через небольшой промежуток времени они были очень удивлены, что найденная молекула оказалась ОЧЕНЬ ХИМИЧЕСКИ-АКТИВНЫМ ГАЗОМ или донатором азота.

В течение 10 лет было опубликовано более 60000 статей на эту тему, а учёные, сделавшие это открытие были удостоены Нобелевской премии в 1998 г. Как вы поняли, эта молекула оказалась аргинином.

Позже, это открытие помогло многим больным гипертонией (т.к. аргинин расслабляет сосуды), а так же тем, кто имел проблемы с желудочно-кишечным трактом в качестве вещества, которое стимулирует (поддерживает) иммунитет.

Но медицина медициной друзья. Что насчёт бодибилдинга? Несколько исследований показали, что аргинин вызывает КРАТКОВРЕМЕННОЕ расширение сосудов! Т.е. аргинин даже если и увеличивает выработку оксида азота, то на небольшой промежуток времени! Поэтому его польза в бодибилдинге весьма сомнительна.

Дак что же донаторы азота, увеличивающие содержание NO в крови – это всё один глобальный обман? Не спешите с выводами, друзья. Просто нужны БОЛЕЕ МОЩНЫЕ ДОНАТОРЫ АЗОТА!

История открытия

В 1772 году Генри Кавендиш провёл опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент), и описал его как мефитический воздух (от английского mephitic — ‘вредный’). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли.

Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон.

Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, также неверно истолковал полученные результаты — он решил, что выделил флогистированный воздух (т. е. насыщенный флогистоном).

В сентябре 1772 года шотландский химик Даниэль Резерфорд опубликовал магистерскую диссертацию «О так называемом фиксируемом и мефитическом воздухе», в которой описал азот как вредный, ядовитый воздух и предположил, что это новый химический элемент, а также описал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Резерфорд также был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно.

В то же время азот выделил Карл Шееле: летом 1772 года он получил азот по методу Кавендиша и исследовал его в течение пяти лет, затем опубликовал результаты своих исследований. В этой публикации Шееле первым описал воздух как смесь отдельных газов: «огненного воздуха» (кислорода) и «грязного воздуха» (азота). Из-за того, что Шееле задержался с публикацией своих исследований, до сих пор идут споры о первооткрывателе азота.

Наркотик веселящий газ — действие и эффект

Веселящий газ — это наркотик, который распространяют возле ночных клубов, дискотек, реализуют в сети Интернет.

Находясь под действием веселящего газа, человек испытывает эйфорию, радость, восторг. Он забывает о проблемах. Его не беспокоит чувство тревоги. Состояние похоже на опьянение. Средство мгновенно попадает в кровь. Внешне действие веселящего газа проявляется в безудержном смехе, гипертрофированном выражении положительных эмоций. Оживленное веселье с речедвигательным возбуждением длится 10-15 минут, после чего требуется повторное вдыхание. Если употребление продолжается, вскоре наступает сонливость, дискоординация движений, смазанность речи. Человек перестает ориентироваться в пространстве и времени.

Зависимость от вещества может возникнуть после употребления нескольких доз. Физическое влечение при этом выражено не так сильно, как психологическое. Тем не менее, при попытке отказа от закиси азота у токсикомана возникают следующие симптомы ломки: головокружение, головная боль, обморочные состояния.

Разница между оксидом азота и закисью азота

Определение

Оксид азота: Оксид азота представляет собой оксид азота, имеющий химическую формулу NO.

Оксид азота: Закись азота представляет собой оксид азота, имеющий химическую формулу N2О.

Молярная масса

Оксид азота: Молярная масса оксида азота составляет 30 г / моль.

Оксид азота: Молярная масса закиси азота составляет 44 г / моль.

Точка плавления и точка кипения

Оксид азота: Температура плавления оксида азота составляет -164 ° С, а температура кипения составляет -152 ° С.

Оксид азота: Температура плавления закиси азота составляет -90,86 ° С, а температура кипения составляет -88,48 ° С.

Оксид азота: Атомность оксида азота составляет 2.

Оксид азота: Атомность закиси азота составляет 3.

Степень окисления азота

Оксид азота: Степень окисления азота в оксиде азота составляет +2.

Оксид азота: Степень окисления азота в закиси азота составляет +1.

Заключение

Азот является неметаллическим химическим элементом в группе 5 периодической таблицы. Может образовывать много оксидных соединений. Оксид азота и закись азота являются такими двумя соединениями. Основное различие между оксидом азота и закисью азота состоит в том, что азот оксида азота имеет степень окисления +2, тогда как степень окисления азота в закиси азота составляет +1.

Оксиды

Оксиды — соединения двух элементов, один из которых кислород в степени окисления -2.

Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N20, NO.

Солеобразующие оксиды:

Основные. Оксиды, гидраты которых являются основаниями. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na2O — оксид натрия, СаО — оксид кальция, CuO — оксид меди (II), СоО — оксид кобальта (II), Bi2O3 — оксид висмута (III), Mn2O3 — оксид марганца (III).

Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl2O3 — оксид алюминия, Cr2O3 — оксид хрома (III), SnO2 — оксид олова (IV), МnO2 — оксид марганца (IV), ZnO — оксид цинка, ВеО — оксид бериллия.

Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов.

Примеры: Р2О3 — оксид фосфора (III), СO2 — оксид углерода (IV), N2O5 — оксид азота (V), SO3 — оксид серы (VI), Cl2O7 — оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7.

Примеры: Sb2O5 — оксид сурьмы (V). СrОз — оксид хрома (VI), МnОз — оксид марганца (VI), Мn2O7 — оксид марганца (VII).

Изменение характера оксидов при увеличении степени окисления металла

Изменение характера оксидов при увеличении с. о. металла Cr+2O (осн.) Cr+32O 3(амф.) Cr+6O 3(кисл.)
Mn+2O (осн.) Mn+4O2 (амф.) Mn+6O3 (кисл.)
Mn+32O3 (осн.) Mn+72O 7 (кисл.)

Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета — твердые вещества. Оксид серы (VI) SO3 — бесцветная летучая жидкость, а оксид углерода (IV) СО2 — бесцветный газ при обычных условиях.

Агрегатное состояние

Твердые:

CaO, СuО, Li2O и др. основные оксиды; ZnO, Аl2O3, Сr2O3 и др. амфотерные оксиды; SiO2, Р2O5, СrO3 и др. кислотные оксиды.

Жидкие:

SO3, Cl2O7, Мn2O7 и др..

Газообразные:

CO2, SO2, N2O, NO, NO2 и др..

Растворимость в воде

Растворимые:

а) основные оксиды щелочных и щелочноземельных металлов;

б) практически все кислотные оксиды (исключение: SiO2).

Нерастворимые:

а) все остальные основные оксиды;

б) все амфотерные оксиды

в) SiO2

Химические свойства

1. Кислотно-основные свойства

Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:

Пример:

(только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO2).

Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:

2. Окислительно — восстановительные свойства

Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. — окислительные.

Примеры реакций, в которых оксиды выступают в роли восстановителей:

Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.

2C+2O + O2 = 2C+4O2

2S+4O2 + O2 = 2S+6O3

2N+2O + O2 = 2N+4O2

Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.

C+2O + FeO = Fe + 2C+4O2

C+2O + H2O = H2 + 2C+4O2

Примеры реакций, в которых оксиды выступают в роли окислителей:

Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.

C+4O2 + C = 2C+2O

2S+6O3 + H2S = 4S+4O2 + H2O

C+4O2 + Mg = C0 + 2MgO

Cr+32O3 + 2Al = 2Cr0 + 2Al2O3

Cu+2O + H2 = Cu0 + H2O

Использование оксидов малоактивных металлов дпя окисления органических веществ.

Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;

например:

2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O

Способы получения

1. Взаимодействие простых веществ — металлов и неметаллов — с кислородом:

4Li + O2 = 2Li2O;

2Cu + O2 = 2CuO;

S + O2 = SO2

4P + 5O2 = 2P2O5

2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:

Cu(OH)2 = CuO + H2O

2Al(OH)3 = Al2O3 + 3H2O

H2SiO3 = SiO2 + H2O

3. Разложение некоторых солей:

4. Окисление сложных веществ кислородом:

CH4 + 2O2 = CO2 + H2O

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

4NH3 + 5O2 = 4NO + 6H2O

5.Восстановление кислот-окислителей металлами и неметаллами:

6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).

Двуокись азота NO2

Монооксид азота NO.

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ‑связь ( N=O), в твердом состоянии димер N2O2 со связью N – N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Мало растворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. Весьма реакционноспособна смесь NO и NO2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.

Уравнения важнейших реакций:

2NO + O2 (изб.) = 2NO2 (20 °C)

2NO + С (графит) = N2 + СO2 (400–500 °C)

lONO + 4Р (красн.) = 5N2 + 2Р2O5 (150–200 °C)

2NO + 4Cu = N2 + 2Cu2O (500–600 °C)

Реакции смеси NO и NO2:

NO + NO2 + Н2O = 2HNO2(p)

NO + NO2 + 2KOH (разб.) = 2KNO2 + h3O

NO + NO2 + Na2CO3 = 2NaNO2 + CO2 (450–500 °C)

Получение: в промышленности– окисление аммиака (см.) кислородом на катализаторе, в лаборатории

– взаимодействие разбавленной азотной кислоты с восстановителями:

8HNO3 (хол.) + 6Hg = 3Hg2(NO3)2 + 2NO

или восстановление нитритов:

2NaNO2 + 2h3SO4 (разб.) + 2NaI = 2NO

Диоксид азота NO2.

Кислотный оксид, условно отвечает двум кислотам – HNO2 и HNO3 (кислота для NIV не существует). Бурый газ, при комнатной температуре мономер NO2, на холоду жидкий бесцветный димер N2O4 (тетраоксид диазота). Молекула NO2 – радикал со строением незавершенного треугольника (sр2‑гибридизация) с ковалентными σ, π‑связями N=O. Молекула N2O4 содержит очень длинную связь N – N (175 пм), которая легко разрывается при температуре выше комнатной (в интервале 20,7–135,0 °C). Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Усиливает химическую активность NO (см.). Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит. Уравнения важнейших реакций:

Получение: в промышленности– окисление NO (см.) кислородом воздуха, в лаборатории

– взаимодействие концентрированной азотной кислоты с восстановителями:

Бесцветный газ с приятным запахом («веселящий газ»), N=N=O, формальная степень окисления азота +I, плохо растворим в воде. Поддерживает горение графита и магния:

2N2O + С = СO2 + 2N2 (450 °C)

N2O + Mg = N2 + MgO (500 °C)

Получают термическим разложением нитрата аммония:

NpNO3 = N2O + 2Н2O (195–245 °C)

Применяется в медицине как анестезирующее средство.

Триоксид диазота N2O3.

При низких температурах – синяя жидкость, ON=NO2, формальная степень окисления азота +III. При 20 °C на 90 % разлагается на смесь бесцветного NO и бурого NO2 («нитрозные газы», промышленный дым – «лисий хвост»). N2O3 – кислотный оксид, на холоду с водой образует HNO2, при нагревании реагирует иначе:

Синтез бензальанилина Цель работы: провести литературный обзор по аминам. Синтезировать бензальанилин. Амины – производные аммиака, в которых атомы водорода замещены углеводородными группами. Атом азота в ам .

Электрофильное ароматическое замещение Электрофильное замещение, несомненно, составляет самую важную группу реакций ароматических соединений. Вряд ли найдется какой-нибудь другой класс реакций, который так детально, глубоко и все .

Использование озона Озон – высокоэффективное и универсальное окисляющее вещество, которое используется в обработке воды в целях дезинфекции, удаления марганца и железа, улучшения вкуса, устранения цвета и запа .

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий