Закон радиоактивного распада

Как действовать?

То, удастся ли спасти человека от губительного контакта с этим веществом, зависит не от периода полураспада полония-210, и даже не от того, какое количество металла или испарений оказало воздействие. А от лечения и своевременной помощи. Вот как нужно действовать:

  • При прикосновении к металлу сразу же промыть этот участок тела, применив большое количество стирального порошка или хозяйственного мыла.
  • При попадании изотопа в пищевод надо немедля вызвать рвоту. Поскольку счет идет на секунды, для этого применяются подкожные инъекции апоморфина. И прием слабительного – введение клизмой сульфата натрия и магния.

Естественно, перед этим необходимо вызвать скорую. В таких случаях квалифицированная медицинская помощь первостепенна.

В течении полугода-года изотоп может быть выведен из организма почками. Но за это время он накопится и причинит вред (облысение, например).

Если вещество успело впитаться в ткань органов, медики используют химические соединения из оксатиола и унитиола. Эти препараты могут «извлечь» полоний-210 и вывести наружу. В течение как минимум недели пострадавшему придется лежать под капельницей.

Период полураспада

Примем t=nt’. Тогда экспоненциальное выражение е-kt можно записать в виде е-nkt’= (е-kt’)n. Отсюда следует, что в каждый последующий период времени t’ концентрация нераспавшихся молекул уменьшается пропорционально одному и тому же коэффициенту.

В рассмотренном выше примере (в котором k=0,001 с-1) упоминалось, что при t’ = 693 с значение / равно ½. Не трудно убедиться, что еще через 693 с (при t = 2t’) оно будет равно ¼, при t = 3t’ будет равно 1/8 и т. д.

Время, необходимое для того чтобы концентрация реагирующего вещества, распадающегося по реакции первого порядка, уменьшилась наполовину, называется периодом полураспада. Из уравнения (10.4) следует, что период полураспада равен значению t’, при котором е-kt’ = ½. Чтобы вычислить t’, следует произвести следующие действия:

ln(е-kt’) = -kt’ = ln½.

kt’ = ln2 = 2,30259 lg2=0,69315,

Период полураспада = t’ = 0,69315/k . (10.5)

Из этого уравнения, устанавливающего зависимость между периодом полураспада и константой скорости реакции, очевидна правильность сделанного ранее вывода, что при k =0,001 с-1 период полураспада составляет 693 с.

Закон радиоактивного распада

Моделирование распада многих идентичных атомов. Начиная с 4 атомов (слева) и 400 (справа). Сверху показано число периодов полураспада.

Основная статья: Закон радиоактивного распада

Закон радиоактивного распада — закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

dNdt=−λN,{\displaystyle {\frac {dN}{dt}}=-\lambda N,}

что означает, что число распадов за интервал времени t в произвольном веществе пропорционально числу N имеющихся в образце радиоактивных атомов данного типа.

В этом математическом выражении λ — постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеет размерность с−1. Знак минус указывает на убывание числа радиоактивных ядер со временем. Закон выражает независимость распада радиоактивных ядер друг от друга и от времени: вероятность распада данного ядра в каждую следующую единицу времени не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Этот закон считается основным законом радиоактивности, из него было извлечено несколько важных следствий, среди которых формулировки характеристик распада — среднее время жизни атома и период полураспада.

Константа распада радиоактивного ядра в большинстве случаев практически не зависит от окружающих условий (температуры, давления, химического состава вещества и т. п.). Например, твёрдый тритий T2 при температуре в несколько кельвинов распадается с той же скоростью, что и газообразный тритий при комнатной температуре или при температуре в тысячи кельвинов; тритий в составе молекулы T2 распадается с той же скоростью, что и в составе тритированного валина. Слабые изменения константы распада в лабораторных условиях обнаружены лишь для электронного захвата — доступные в лаборатории температуры и давления, а также изменение химического состава способны несколько изменять плотность электронного облака в окружении ядра, что приводит к изменению скорости распада на доли процента. Однако в достаточно жёстких условиях (высокая ионизация атома, высокая плотность электронов, высокий химический потенциал нейтрино, сильные магнитные поля), труднодостижимых в лаборатории, но реализующихся, например, в ядрах звёзд, другие типы распадов тоже могут изменять свою вероятность.

Постоянство константы радиоактивного распада позволяет измерять возраст различных природных и искусственных объектов по распаду входящих в их состав радиоактивных ядер и накоплению продуктов распада. Разработан ряд методов радиоизотопного датирования, позволяющих измерять возраст объектов в диапазоне от единиц до миллиардов лет; среди них наиболее известны радиоуглеродный метод, уран-свинцовый метод, уран-гелиевый метод, калий-аргоновый метод и др.

Что происходит потом

С радиоактивными осадками и отходами цезий-137 попадает в почву, откуда поступает в растения, у которых наблюдается коэффициент его поглощения на уровне 100 %. При этом до 60 % нуклида накапливается в надземных частях растительного организма. При этом в почвах, бедных калием, эффект накопления цезия-137 заметно увеличивается.

Наибольшие коэффициенты накопления этого нуклида отмечены в пресноводных водорослях, лишайниках и растительных организмах арктической зоны. В теле животных этот радионуклид накапливается в мышцах и печени.

Наиболее высокие его концентрации отмечались у северных оленей и водоплавающих птиц арктических побережий.

Аккумулируют цезий и грибы. Особенно маслята, польские грибы, моховики и свинушки на протяжении всего периода полураспада.

Воздействие на организмы

Радионуклиды, попадающие в окружающую среду, могут вызывать вредные последствия в виде радиоактивного загрязнения . Они также могут причинить вред, если чрезмерно используются во время лечения или иным образом подвергаются воздействию живых существ в результате радиационного отравления . Потенциальный ущерб здоровью от воздействия радионуклидов зависит от ряда факторов и «может повредить функции здоровых тканей / органов. Облучение может вызывать такие эффекты, как покраснение кожи и выпадение волос, радиационные ожоги и острый лучевой синдром . Продолжительное воздействие может приводят к повреждению клеток и, в свою очередь, к раку. Признаки раковых клеток могут не проявляться в течение нескольких лет или даже десятилетий после воздействия ».

Особенности полураспада изотопов

Для каждого вещества-изотопа строго определен период полураспада. Стронций-90 обладает периодом в 28 лет. Однако это не означает, что все его атомы исчезнут по прошествии 56 лет. Также не играет роли первоначальное количество изотопа. Во время распада некоторая часть стронция может меняться, превращаясь в более легкие элементы. Если период полураспада радиоактивного стронция равен 28 лет, то это означает следующее.

Через этот промежуток времени от первоначального количества изотопа останется половина. Еще по прошествии 28 лет – четверть и так далее. Получается, что стронций может загрязнить окружающую среду на десятки лет. Некоторые ученые округляют это число, обозначая, что период полураспада стронция – 29 лет. Через этот промежуток времени остается половина от вещества, но этого достаточно, чтобы стронций распространился далеко за пределы аварии.

Примечания

  1. Carl R. (Rod) Nave. . . Georgia State University (2016). Дата обращения: 22 ноября 2019.
  2. Такой же вид имеет зависимость от времени интенсивности (скорости) распада, то есть активности образца, и аналогичным образом через неё определяется период полураспада как промежуток времени, по истечении которого интенсивность распада снизится вдвое
  3. Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. — К.: Техніка, 1975. — С. 52. — 240 с. — 2000 экз.
  4. ↑ . infotables.ru — Справочные таблицы. Дата обращения: 6 ноября 2019.
  5. ↑ . periodictable.com. Дата обращения: 11 ноября 2019.
  6. ↑ . Caltech Astronomy Department. Дата обращения: 10 ноября 2019.
  7. ↑ . Калькулятор – справочный портал. Дата обращения: 7 ноября 2019.
  8. M. P. Unterweger, D. D. Hoppes, F. J. Schima, and J. S. Coursey.  (англ.). NIST (6 September 2009). Дата обращения: 26 ноября 2019.

Парциальный период полураспада

Если система с периодом полураспада T12{\displaystyle T_{1/2}} может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi{\displaystyle p_{i}}. Тогда парциальный период полураспада по i-му каналу равен

T12(i)=T12pi.{\displaystyle T_{1/2}^{(i)}={\frac {T_{1/2}}{p_{i}}}.}

Парциальный T12(i){\displaystyle T_{1/2}^{(i)}} имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению pi≤1{\displaystyle p_{i}\leq 1}, то T12(i)≥T12{\displaystyle T_{1/2}^{(i)}\geq T_{1/2}} для любого канала распада.

Действие на организм человека стронция-90 и цезия-137

Стронций-90 при попадании накапливается в костной ткани, костном мозге, органах кроветворения. Повреждающее действие вызывает малокровие (анемию). Действие его продолжается десятилетиями, так как период полураспада элемента составляет 29 лет, а полувыведения – 30 лет. При попадании внутрь стронций в течение 15 минут концентрируется в крови, полностью оседая в органах-мишенях через 5 часов. Выведение этого радиоактивного вещества составляет сложную задачу.  Пока нет эффективных методов, противостоять его воздействию.

Цезий-137 – второй по распространенности и опасности для человека радионуклид. Он имеет свойство накапливаться в клетках растений и уже в составе пищевых продуктов через желудок и кишечник проникать в организм человека. Период полураспада 30 лет. Излюбленная локализация – мышцы. Выводится очень медленно.

Главный поставщик биосферного радионуклида

Источником биосферного радиоактивного нуклида цезия-137 с периодом полураспада больше 30 лет является ядерная энергетика.

Статистика неумолима. По данным 2000 года, всеми реакторами атомных электростанций мира в атмосферу выброшено порядка около 22,2 × 1019 Бк цезия-137, период полураспада которого — более 30 лет.

Загрязняется не только атмосфера. С танкеров и ледоколов с атомными установками, с подводных атомных лодок в год в океан попадает данный радионуклид. Так, по подсчетам специалистов, в течение работы одного реактора подводной лодки в течение одного года в океан попадет порядка 24 х 1014 Бк. Если учесть время полураспада цезия-137, это становится опасным источником очень длительного загрязнения окружающей среды.

Сюжет[править]

Несмотря на то, что цикл кажется собранным из отдельных эпизодов, все они объединены единым сюжетом. Особо доставляет предсказание автором войн в Йемене и стране, которую нельзя называть, сделанное в первой же книге цикла, опубликованной в 2010 году. Итак:
На дворе — 2013 год. Военный переворот в Турции привел к тому, что к власти в стране пришли радикальные антиисламисты, с амбициями по возвращению под контроль территории Курдистана, а в дальнейшем — оккупации территории Ирана и созданием Великого Турана. Год спустя Израиль получает сведения об иранском ядерном потенциале, характер которых заставляет Генштаб планировать военную операцию по уничтожению всех объектов иранской ядерной инфраструктуры. Постепенно к ее подготовке и проведению подключаются и США. В свою очередь, очередные выборы на Украине заканчиваются очередной революцией и вводом в страну миротворческих контингентов ЕС и США. Надо сказать, что русскоязычное население юго-востока и российские военные, размещенные в Крыму, сильно не рады такому повороту, и после уничтожения авиационным ударом Черноморского флота оказывают миротворческим силам вооруженное сопротивление, которое перерастает в полноценную партизанскую войну. Приблизительно в это же время обостряются территориальные споры между Арменией и Азербайджаном, а Китай начинает тайную поддержку исламистов в Афганистане и явную — пакистанских военных. Тем временем в России в очередной раз назревают столкновения на национальной почве на Кавказе.

Парциальный период полураспада

Если система с периодом полураспада T12{\displaystyle T_{1/2}} может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi{\displaystyle p_{i}}. Тогда парциальный период полураспада по i-му каналу равен

T12(i)=T12pi.{\displaystyle T_{1/2}^{(i)}={\frac {T_{1/2}}{p_{i}}}.}

Парциальный T12(i){\displaystyle T_{1/2}^{(i)}} имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению pi≤1{\displaystyle p_{i}\leq 1}, то T12(i)≥T12{\displaystyle T_{1/2}^{(i)}\geq T_{1/2}} для любого канала распада.

Что происходит в организме человека

Главные пути попадания цезия в организм – через пищеварительный тракт и дыхательные пути. При наружном попадании цезия-137 на неповрежденную кожу проникает внутрь 0,007 %. При попадании внутрь организма 80 % его накапливается в скелетных мышцах.

Выводится элемент через почки и кишечник. В течение месяца выводится до 80 % цезия. В соответствии с данными Международной комиссии по радиологической защите период полувыведения радионуклида составляет семьдесят дней, но скорость зависит от состояния организма, возраста, питания и других факторов.

Радиационные поражения, схожие по симптоматике с лучевой болезнью, развиваются при получении дозы более 2 Гр. Но уже при единицах МБк наблюдаются признаки легкого лучевого поражения в виде диареи, внутренних кровотечений, слабости.

Гамма-распад

Кроме
альфа и бета-распада существует также
гамма-распад. Гамма-распад – это излучение
гамма-квантов ядрами в возбужденном
состоянии, при котором они обладают
большой по сравнению с невозбужденным
состоянием энергией. В возбужденное
состояние ядра могут приходить при
ядерных реакциях либо при радиоактивных
распадах других ядер. Большинство
возбужденных состояний ядер имеют очень
непродолжительное время жизни – менее
наносекунды.

Также
существуют распады с эмиссией нейтрона,
протона, кластерная радиоактивность и
некоторые другие, очень редкие виды
распадов. Но превалирующие виды
радиоактивности это
альфа, бета и гамма-распад.

А́томное
ядро́
 —
центральная часть атома,
в которой сосредоточена основная
его масса (более
99,9 %). Ядро заряжено положительно,
заряд ядра определяет химический
элемент,
к которому относят атом. Размеры ядер
различных атомов составляют
несколько фемтометров,
что в более чем в 10 тысяч раз меньше
размеров самого атома.

Атомные
ядра изучает ядерная
физика.

Атомное
ядро состоит из нуклонов —
положительно заряженных протонов и
нейтральных нейтронов,
которые связаны между собой при
помощи сильного
взаимодействия.
Протон и нейтрон обладают собственным
моментом количества движения (спином),
равным  и
связанным с ним магнитным
моментом.

Атомное
ядро, рассматриваемое как класс частиц
с определённым числом протонов и
нейтронов, принято называть нуклидом.

Количество
протонов в ядре называется его зарядовым
числом —
это число равно порядковому номеру элемента,
к которому относится атом,
в таблице Менделеева.
Количество протонов в ядре определяет
структуру электронной
оболочки нейтрального
атома и, таким образом, химические
свойства соответствующего
элемента. Количество нейтронов в ядре
называется его изотопическим
числом
 .
Ядра с одинаковым числом протонов и
разным числом нейтронов называются изотопами.
Ядра с одинаковым числом нейтронов, но
разным числом протонов —
называются изотонами.
Термины изотоп и изотон используются
также применительно к атомам, содержащим
указанные ядра, а также для характеристики
нехимических разновидностей одного
химического элемента. Полное количество
нуклонов в ядре называется его массовым
числом  ()
и приблизительно равно средней массе
атома, указанной в таблице Менделеева.
Нуклиды с одинаковым массовым числом,
но разным протон-нейтронным составом
принято называть изобарами.

Как
и любая квантовая система, ядра могут
находиться в метастабильном возбуждённом
состоянии, причём в отдельных случаях время
жизни такого
состояния исчисляется годами. Такие
возбуждённые состояния ядер
называются ядерными
изомерами

Определение и основные соотношения


Зависимость числа выживших частиц от времени при экспоненциальном распаде

Понятие периода полураспада применяется как к испытывающим распад элементарным частицам, так и к радиоактивным ядрам. Поскольку событие распада имеет квантовую вероятностную природу, то если рассматривать одну структурную единицу материи (частицу, атом радиоактивного изотопа), можно говорить о периоде полураспада как промежутке времени, по истечении которого средняя вероятность распада рассматриваемой частицы будет равна 1/2.

Если же рассматривать экспоненциально распадающиеся системы частиц, то периодом полураспада T12{\displaystyle T_{1/2}} будет называться время, в течение которого распадается в среднем половина радиоактивных ядер. Согласно закону радиоактивного распада, число нераспавшихся атомов в момент времени t{\displaystyle t} связано с начальным (в момент t={\displaystyle t=0}) числом атомов N{\displaystyle N_{0}} соотношением

N(t)N=e−λt,{\displaystyle {\frac {N(t)}{N_{0}}}=e^{-\lambda t},}
где λ{\displaystyle \lambda } — постоянная распада.

По определению, N(T12)N=12,{\displaystyle {\frac {N(T_{1/2})}{N_{0}}}={\frac {1}{2}},} следовательно, e−λT12=12,{\displaystyle e^{-\lambda T_{1/2}}={\frac {1}{2}},} откуда

T12=ln⁡2λ≈,693λ.{\displaystyle T_{1/2}={\frac {\ln 2}{\lambda }}\approx {\frac {0,693}{\lambda }}.}

Далее, поскольку среднее время жизни τ=1λ{\displaystyle \tau ={\frac {1}{\lambda }}}, то

T12=τln⁡2≈,693τ,{\displaystyle T_{1/2}=\tau \ln 2\approx 0,693\tau ,}

то есть период полураспада примерно на 30,7 % короче, чем среднее время жизни. Например, для свободного нейтрона T12{\displaystyle T_{1/2}} = 10,3 минуты, а τ{\displaystyle \tau } = 14,9 минуты.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T12{\displaystyle 2T_{1/2}} останется четверть от начального числа частиц, за 3T12{\displaystyle 3T_{1/2}} — одна восьмая и т. д.. При этом для каждой конкретной отдельной частицы по прошествии времени T12{\displaystyle T_{1/2}} ожидаемая средняя продолжительность жизни (соответственно, и вероятность распада, и период полураспада) не изменится — этот контринтуитивный факт является следствием квантовой природы явления распада.

Парциальный период полураспада

Если система с периодом полураспада T12{\displaystyle T_{1/2}} может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi{\displaystyle p_{i}}. Тогда парциальный период полураспада по i-му каналу равен

T12(i)=T12pi.{\displaystyle T_{1/2}^{(i)}={\frac {T_{1/2}}{p_{i}}}.}

Парциальный T12(i){\displaystyle T_{1/2}^{(i)}} имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению pi≤1{\displaystyle p_{i}\leq 1}, то T12(i)≥T12{\displaystyle T_{1/2}^{(i)}\geq T_{1/2}} для любого канала распада.

Свойства и характеристики

О них тоже необходимо рассказать. Если рассматривать данное радиоактивное вещество как элемент, то можно выделить следующие его свойства и особенности:

  • Масса ядра полония-210 составляет около 208,9824 атомной единицы (г/моль).
  • Формула расположений электронов по оболочкам атома (конфигурация) выглядит так: 4f14 5d10 6s2 6р4.
  • Радиус атома, обозначающий расстояние между ядром и самой дальней электронной орбитой, равен 176 пикометрам. 1 пк = 1 триллионная часть метра.
  • Ковалентный радиус, обозначающий половину расстояния между ядрами атома с ковалентной связью, равен 146 пк.
  • Радиус иона (размер) составляет (+6e) 67 пм.
  • Электроотрицательность по шкале Полинга равна 2,3. Данный термин подразумевает способность одних атомов оттягивать к себе электроны иных. Самый высокий показатель, кстати, у фтора — 9,915.
  • Электродный потенциал (электродвижущая сила) выглядит следующим образом: Ро ← Ро3+ 0,56 В и Ро ← Ро2+ 0,65 В.
  • Степени окисления следующие: -2, +2, +4 и +6.
  • Энергия ионизации (наименьшая необходимая для удаления от свободного атома электрона) составляет 813,1 (8,43) кДж/моль или эВ.
  • Плотность вещества при нормальных условиях равна приблизительно 9,5 г/см3.
  • Температура плавления этого мягкого металла равна всего лишь 254 °C.
  • Кипит полоний при 962°C.
  • Удельная теплота плавления и испарения составляет 10 и 102,9 кДж/моль соответственно.
  • Молярная теплоемкость равна 26,4 Дж/(K*моль).
  • Молярный объем составляет 22,7 см³/моль.

И еще пару слов стоит сказать о кристаллической решетке данного мягкого металла. Это геометрический образ, который введен для анализа строения кристаллов вещества. У полония структура кубическая, и параметры равны 3,35 ангстрема.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

Радий

88Ra219

альфа

0,001 секунд

Магний

12Mg27

бета

10 минут

Радон

86Rn222

альфа

3,8 суток

Кобальт

27Co60

бета, гамма

5,3 года

Радий

88Ra226

альфа, гамма

1620 лет

Уран

92U238

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название «период полураспада». В чем смысл введения этого понятия?

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 %; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Примечания

  1. Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1994. — Т. 4. Пойнтинга — Робертсона — Стримеры. — С. 210. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Манолов К., Тютюнник В. Биография атома. Атом — от Кембриджа до Хиросимы. — Переработанный пер. с болг.. — М.: Мир, 1984. — С. 20—21. — 246 с.
  3. А.Н.Климов. Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.
  4. Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчета ядерных энергетических реакторов. — Москва: Энергоатомиздат, 1982.
  5. I.R.Cameron, Nuclear fission reactors. — Canada, New Brunswick: Plenum Press, 1982.
  6. И.Камерон. Ядерные реакторы. — Москва: Энергоатомиздат, 1987. — С. 320.

История открытия

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом.

24 февраля 1896 года на заседании Французской академии наук он сделал сообщение «Об излучении, производимых фосфоресценцией». Но уже через несколько дней в интерпретацию полученных результатов пришлось внести корректировки. 26 и 27 февраля в лаборатории Беккереля был подготовлен очередной опыт с небольшими изменениями, но из-за облачной погоды он был отложен. Не дождавшись хорошей погоды, 1 марта Беккерель проявил пластинку, на которой лежала урановая соль, так и не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Уже 2 марта Беккерель доложил об этом открытии на заседании Парижской Академии наук, озаглавив свою работу «О невидимой радиации, производимой фосфоресцирующими телами».

Впоследствии Беккерель испытал и другие соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу — урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают из-за радиоактивного загрязнения, внесённого при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий