Влияние компонентов на свойства стали

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Испытание сталей

Чтобы полностью изучить свойства материала и определения предела текучести, пластических деформаций и прочности проводят испытание образцов металла до полного разрушения. Испытание проводят при действии нагрузок следующего вида:

  • статической нагрузкой;
  • циклической категории (на выносливость или усталость);
  • растяжение;
  • изгиб;
  • кручение;
  • реже на сочетающиеся нагрузки, например, изгиб и растяжение.

Определение пределов испытательных нагрузок производят в стандартных условиях, с применением специальных машин, которые описаны в правилах Государственных стандартов.

Испытание образца для определения предела текучести

Для этого берут образец цилиндрической формы размером 20 мм, расчетной длиной 10 мм и применяют к нему нагрузку растяжением. Понятие расчетной длины обозначает расстояние между рисками, нанесенными на более длинном образце для возможности захвата. Для проведения испытания определяют зависимость между увеличением растягивающей силы и удлинением испытательного образца. Все показания испытания автоматически отображаются в виде диаграммы для наглядного сравнения. Ее называют диаграммой условного растяжения или условного напряжения, график зависит от первоначального сечения образца и первоначальной его длины. Вначале увеличение силы приводит к пропорциональному удлинению образца. Такое положение действует до предела пропорциональности.

После достижения этого порога график становится криволинейным и обозначает непропорциональное увеличение длины при равномерном повышении нагрузки. Дальше следует определение предела текучести. До тех пор, пока напряжения в образце не превосходят этого показателя, то материал с прекращением нагрузки может вернуться в первоначальное состояние относительно размеров и формы. На практике испытательного процесса разница между этими пределами невелика и не стоит особого внимания.

Предел текучести

Если продолжать увеличивать нагрузку, то наступает такой момент испытания, когда изменение формы и размеров продолжается без увеличения силы. На диаграмме это показывается горизонтальной прямой (площадкой) текучести. Фиксируется максимальное напряжение, при котором увеличивается деформация, после прекращения наращивания нагрузки. Этот показатель называется пределом текучести. Для стали Ст. 3 предел текучести от 2450 кг на квадратный сантиметр.

Условный предел текучести

Многие металлы при испытании дают диаграмму, на которой площадка текучести отсутствует или плохо выражена, для них применяется понятие условного предела текучести. Это понятие определяет напряжение, которое вызывает остаточное изменение или деформацию в пределе 0,2%. Металлами, к которым применяется понятие условного предела текучести, служат легированные и высокоуглеродистые стали, бронза, дюралюминий и другие. Чем пластичнее сталь, тем больше показание остаточных деформаций. К ним относят алюминий, латунь, медь и низкоуглеродистые стали. Испытания стальных образцов показывает, что текучесть металла вызывает значительные сдвиги кристаллов в решетке, и характеризуется появлением на поверхности линий, направленные к центральной оси цилиндра.

Предел прочности

После изменения на некоторую величину происходит переход образца в новую фазу, когда после преодоления предела текучести, металл снова может сопротивляться растяжению. Это характеризуется упрочнением, и линия диаграммы снова поднимается, хотя повышение происходит в более пологом проявлении. Появляется временное сопротивление постоянной нагрузке.

После достижения максимального напряжения (предела прочности) на образце появляется участок резкого сужения, так называемой шейки, характеризующейся уменьшением площади поперечного сечения, и образец рвется в самом тонком месте. При этом значение напряжения резко падает, уменьшается и величина силы.

Сталь Ст.3 характеризуется пределом прочности 4000–5000 кГ/см2. Для высокопрочных металлов такой показатель достигает предела 17500 кГ/см3 этот.

Пластичность материала

Характеризуется двумя показателями:

  • остаточное относительное удлинение;
  • остаточное сужение при разрыве.

Для определения первого показателя измеряют общую длину растянутого образца после разрыва. Чтобы это сделать, складывают две половинки друг с другом. Измерив длину, высчитывают процентное отношение к первоначальной длине. Прочные сплавы менее подвержены пластичности и показатель относительного удлинения снижается до 63 эта11%.

Вторая характеристика рассчитывается после измерения наиболее узкой части разрыва и высчитывается в процентном отношении к первоначальной площади среза образца.

Общие сведения и характеристики сталей

Сталь относят к ковкому деформируемому сплаву на основе железа с углеродом и добавками других элементов. Выплавляют материал из чугунных смесей с металлическим ломом в мартеновских, электрических и кислородных конверторных печах.

Равновесное состояние в структуре сталей

Сформировавшаяся кристаллическая решетка металла зависит от количества содержащегося в них углерода и определяется по структурной диаграмме в соответствии с процессами в этом сплаве. Например, решетка стали, в которой содержится до 0,06% углерода, имеет зернистую структуру и является ферритом в чистом виде. Прочность таких металлов небольшая, но материал обладает высоким пределом ударной вязкости и текучести. Структуры сталей в состоянии равновесия подразделяются:

  • ферритная;
  • перлитно-ферритная;
  • цементитно-ферритная;
  • цементитно-перлитная;
  • перлитная;

Влияние содержание углерода на свойства сталей

Изменения главных составляющих цементита и феррита определяются свойствами первого по закону аддитивности. Увеличение процентной добавки углерода до 1,2% позволяет повысить прочность, твердость, порог хладоемкости на 20ºС и предел текучести. Повышение содержания углерода изменяет физические свойства материала, что иногда приводит к ухудшению технических характеристик, таких как способность к свариванию, деформации при штамповках. Отличным свариванием в конструкциях обладают низкоуглеродистые сплавы.

Добавки марганца и кремния

Марганец вводят в состав сплава в качестве технологической добавки для увеличения степени раскисления и уменьшения вредного воздействия серных примесей. В сталях он присутствует в виде твердых составляющих в количестве не более 0,8% и не оказывает существенного влияния на свойства металла.

Кремний действует в составе сплава аналогичным образом, добавляется при процессе раскисления в количестве не больше 0,38%. Для возможности соединения деталей сваркой содержание кремния не должно быть больше 0,24%. На свойства сталей кремний в составе сплава не влияет.

Примеси серы и фосфора

Пределом содержания серы в сплаве является порог в 0,06%, она содержится в виде хрупких сульфитов. Повышенное содержание примеси существенно ухудшает механические и физические свойства сталей. Это выражается в уменьшении пластичности, предела текучести, ударной вязкости, сопротивления истиранию и коррозии.

Содержание фосфора также ухудшает качественные показатели металлических сплавов, предел текучести после увеличения фосфора в составе повышается, но снижается вязкость и пластичность. Стандартное содержание примеси в сплаве регламентируется интервалом от 0,025 до 0,044%. Наиболее сильно фосфор ухудшает свойства сталей при одновременном высоком показателе добавок углерода.

Азот и кислород в сплаве

Эти вещества загрязняют сталь неметаллическими примесями и ухудшают ее механические и физические показатели. В частности, это относится к порогу вязкости и выносливости, пластичности и хрупкости. Содержание в сплаве кислорода в размере больше, чем 0,03% вызывает быстрое старение металла, азот увеличивает ломкость и повышает со временем деформационное старение. Содержание азота увеличивает прочность, тем самым понижая предел текучести.

Легирующие добавки в составе сплавов

К легированным относят стали, в которые специально вводятся в определенных сочетаниях элементы для повышения качественных характеристик. Комплексное легирование дает наилучшие результаты. В качестве добавок применяют хром, никель, молибден, вольфрам, ванадий, титан и другие.

Легированием повышают предел текучести и другие технологические свойства, такие как ударная вязкость, сужение и возможность прокаливания, снижение порога деформации и растрескивания.

Виды

Какой металл самый тугоплавкий?

Самый тугоплавкий металл на Земле был открыт в 1781 году шведским ученым Карлом Вильгельмом Шееле. Новый материал получил название вольфрам. Шееле удалось синтезировать триокись вольфрама путем растворения руды в азотной кислоте. Чистый металл был выделен двумя годами позже испанскими химиками Фаусто Фермином и Хуаном Хосе де Элюар. Новый элемент не сразу получил признание и был взят на вооружение промышленниками. Дело в том, что технологии того времени не позволяли обрабатывать столь тугоплавкое вещество, поэтому большинство современников не придали особого значения научному открытию.

Вольфрам был оценен гораздо позже. На сегодняшний день его сплавы используются при производстве термостойких деталей для различных отраслей промышленности. Нить накаливания в газоразрядных бытовых лампах также изготавливается из вольфрама. Также он применяется в аэрокосмической промышленности для производства ракетных сопел, используется в качестве многоразовых электродов в газодуговой сварке. Кроме тугоплавкости вольфрам также обладает высокой плотностью, что позволяет использовать его для изготовления высококачественных клюшек для гольфа.

Соединения вольфрама с неметаллами также широко применяется в промышленности. Так сульфид используется в качестве термостойкой смазки, способной переносить температуры до 500 градусов по Цельсию, карбид служит для изготовления резцов, абразивных дисков и сверл, способных обрабатывать самые твердые вещества и переносить высокие температуры нагрева. Рассмотрим, наконец, промышленное получение вольфрама. Самый тугоплавкий металл имеет температуру плавления 3422 градуса по Цельсию.

В чем отличие высокопрочного крепежа от обычного?

Главное отличие от метизов общего назначения заключается в особых физико-механических свойствах высокопрочного крепежа, которые дают ему возможность воспринимать более тяжелую нагрузку. К примеру, болт высокого класса прочности 12.9 разорвется при нагрузке 1200 Н/мм², а аналогичный по диаметру низкого класса 4.8 – при 420 Н/мм², то есть при нагрузке в 2.7 раза меньшей.

Помимо колоссальной стойкости к повышенным нагрузкам, крепеж высокого класса прочности дает еще целый ряд преимуществ:

  • Снижение металлоемкости изделий и конструкций, при одновременном сохранении надежности крепежных узлов. Это достигается путем использования меньших по размеру винтов, но рассчитанных на более высокие нагрузки.
  • Использование шпилек меньшего диаметра влечет за собой уменьшение диаметра монтажных отверстий и, как следствие, повышение прочности металлоконструкций, фланцевых соединений. Кроме того, замена обычных метизов на более прочные позволяет сократить количество точек крепления, снизив тем самым затраты на крепеж.
  • Возможность применения в различных климатических условиях. Высокопрочные болты северного исполнения могут эксплуатироваться в условиях сурового климата до -60°С (маркировка «ХЛ») или средних холодных температур до -40°С (маркировка «У»).
  • Способность воспринимать постоянные, переменные и особые нагрузки (подвижные, вибрационные, динамические, сейсмические).
  • Возможность применения в конструкциях, эксплуатируемых в слабо-, средне-, сильноагрессивных средах с использованием защитных металлических или лакокрасочных покрытий.
  • Создание сдвигоустойчивых соединений. В обычном болтовом соединении при нагрузке на сдвиг происходит смещение соединяемых элементов, равное величине зазора между шпилькой и стенкой отверстия. Высокопрочный болткомплект позволяет стянуть элементы с большим усилием, благодаря чему между ними возникает трение, исключающее сдвиг. Такое соединение называется фрикционным.

Преимущества перед сварочным соединением:

  • Соединения на болтах снижают трудоемкость монтажа, позволяют вести сборку силами рабочих невысокой квалификации, автоматизировать, механизировать сборочный процесс.
  • Применение высокопрочных болтовых соединений при монтаже металлоконструкций позволяет использовать элементы из трудносвариваемых сталей повышенной прочности.
  • Возможность визуального контроля целостности монтажного соединения на болтах, тогда как в сварных швах могут быть скрытые дефекты.

Преимущества перед заклепочным соединением:

Сегодня при возведении металлоконструкций на смену заклепкам пришли высокопрочные болткомплекты, которые более выносливы переменным нагрузкам за счет равномерного распределения напряжения по сечению болтового соединения. К тому же в отличие от заклепок они могут быть легко заменены в случае износа, дают возможность сборки/разборки конструкции, могут использоваться многократно, что облегчают ремонт оборудования.

Предел — прочность — сталь

Это почти вдвое выше предела прочности стали 3; стержень выйдет из строя гораздо раньше, чем будет достигнуто критическое напряжение. Как мы видим, при небольших гибкостях формула Эйлера дает преувеличенные значения критических напряжений и критических сил.

Влияние коррозии с ростом предела прочности стали усиливается. На рис. 9 приведена зависимость пределов выносливости лабораторных образцов от предела прочности стали для различных коррозионных сред. Анализ графиков показывает, что предел выносливости в условиях коррозии не зависит от предела прочности стали, вследствие чего применение легированных сталей при работе детали в коррозионной среде нецелесообразно. Существенно снижается предел выносливости и в том случае, когда образцы подвергаются коррозии до испытания на усталость в течение нескольких дней, после чего их испытывают на усталость без воздействия среды.

Как видно из кривой, предел прочности стали с увеличением времени испытания уменьшается.

С увеличением содержания углерода повышается предел прочности стали, твердость и хрупкость при одновременном уменьшении относительного удлинения и ударной вязкости. Свариваемость стали с повышением содержания углерода ухудшается.

Предыдущий анализ показывает, что предел прочности стали при растяжении оказывает преобладающее влияние на предел выносливости при наличии концентрации напряжений. Оказывается, что прочие факторы, такие, как горячая обработка, состав и качество стали, имеют весьма малое дополнительное влияние по сравнению с влиянием предела прочности при растяжении. Интересно знать, какая величина предела прочности при растяжении обеспечила бы максимальную выносливость при наличии концентрации напряжений. Соотношения, данные выше, показывают, что существует непрерывное, хоть и малое, увеличение предела выносливости в условиях концентрации напряжений при росте предела прочности при растяжении.

Существует мнение, что произведение предела прочности стали на ее относительное сужение можно рассматривать как предел выносливости. При проверке влияния этого показателя на износостойкость стали при ударно-абразивном изнашивании также получены различные зависимости в хрупкой и вязкой областях разрушения. При равномерном увеличении произведения aBty износостойкость стали в хрупкой области разрушения увеличивается, в вязкой области — уменьшается.

По многочисленным данным коэффициенты вариации предела прочности сталей о0в колеблются в предела 3 — 12 %, а распределение величин 0В на множестве всех плавок достаточно хорошо соответствует нормальному закону.

Сопоставление твердости и предела прочности армло-железа и стали с 0 3п / о С при.

Между числом твердости Бринеля и пределом прочности стали для испытаний при комнатной температуре с достаточной степенью точности установлено определенное соотношение.

По данным работы и др. предел прочности стали при поглощение водорода ненагруженными образцами несколько снижается. Результаты наших испытаний , описанные в главе V, показала существенное снижение предела прочности стали в результате на-водороживания образцов без нагрузки в сероводородных растворах.

Механические свойства хромоникелевых сталей с кремнием.

При температуре отжига выше 980 С предел прочности стали 27 — 4 — Мо увеличивается, а ударная вязкость резко снижается, что объясняется образованием игольчатого аустенита во время охлаждения. При 760 С ударная вязкость снижается в результате образования ог-фазы.

Зависимость Ке и К е от температуры для легированной стали ( 17, Кавг.

С понижением температуры предел текучести и предел прочности стали возрастают, причем 0Т увеличивается интенсивнее, так что отношение ат / сгв стремится к единице при снижении температуры до — 180 С.

По данным работы и др. предел прочности стали при поглощение водорода ненагруженными образцами несколько снижается. Результаты наших испытаний , описанные в главе V, показала существенное снижение предела прочности стали в результате на-водороживания образцов без нагрузки в сероводородных растворах.

Основное определение

В процессе использования на любое сооружение приходятся разные нагрузки в виде сжатий, растяжений или ударов. Они могут действовать как обособленно, так и совместно.

Современные конструкторы стремятся уменьшить массу стальных деталей для экономии материала, но при этом не допустить критичного снижения несущей способности всей конструкции. Происходит это засчет уменьшения сечения стальных арматур.

В зависимости от назначения объектов, могут меняться некоторые требования к стали, но имеется перечень стандартных и важных показателей. Их величины рассчитывают на этапе проектирования деталей и узлов будущего сооружения. Заготовка должна обладать высокой прочностью при соответствующей пластичности.

В первую очередь при расчетах прочности изделия из стали обращают внимание на предел текучести. Это значение характеризующее поведение деталей при воздействиях на них

После прохождения этого предела в материале происходят невосстановимые процессы искажения кристаллической решетки. При последующем увеличении силы воздействия на заготовку и преодолении площадки текучести, деформация увеличивается.

Предел текучести иногда путают с пределом упругости. Это похожие понятия, но предел упругости — это величина максимального сопротивления металла и она чуть ниже предела текучести.

Величина текучести примерно на пять процентов превышает предел упругости.

Виды сталей и особенности их маркировки

Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических

В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам

Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:

  • Строительная. Низколегированная сталь с хорошей свариваемостью. Основное назначение – производство строительных конструкций.
  • Пружинная. Имеют высокую упругость, усталостную прочность, сопротивление разрушению. Идет на производство пружин, рессор.
  • Подшипниковая. Основной критерий – высокая износоустойчивость, прочность, низкая текучесть. Применяется для производства узлов и составляющих подшипников различного назначения.
  • Коррозионностойкая (нержавеющая). Высоколегированная сталь с повышенной стойкостью к воздействию агрессивных веществ.
  • Жаропрочная. Отличается способностью длительное время работать в нагруженном состоянии при повышенных температурах. Область применения – детали двигателей, в том числе газотурбинных.
  • Инструментальная. Применяется для производства метало- и деревообрабатывающих, измерительных инструментов.
  • Быстрорежущая. Для изготовления инструмента металлообрабатывающего оборудования.
  • Цементируемая. Применяется при изготовлении деталей и узлов, работающих при больших динамических нагрузках в условиях поверхностного износа.

Читать также: Классификация назначение и устройство металлорежущего оборудования

При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали

Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Самый тугоплавкий материал

Информация о материале
Опубликовано: 30 июля 2015 30 июля 2015

Просмотров: 6948 6948

  • Назад

  • Вперед

Сводная таблица технической информации по арматуре.

Класс арматуры в зависимости от механических свойств

Стандарт

Маркастали

Диаметр арматуры, мм

Способ производства арматуры

Вид профиля

А-I (А240)

Ст3кп, Ст3пс, Ст3сп

А-II (А300)

Периодический профиль с 2-я продольными ребрами и поперечными ребрами идущими по винтовым линиям с одинаковым заходом на обеих сторонах профиля

18Г2С

Ас-II (Ас300)

А-III (А400)

периодический профиль с 2-я продольными ребрами и поперечными ребрами идущими по винтовым линиям, имеющим с одной стороны профиля правый, а с другой — левый заходы

32Г2Рпс

А-IV (А600)

20ХГ2Ц

А-V (А800)

с низкотемпературным отпуском

периодический профиль с 2-я продольными ребрами и поперечными ребрами идущими по винтовым линиям, имеющим с одной стороны профиля правый, а с другой — левый заходы

Арматура А-VI (А1000)

20Х2Г2СР, 22Х2Г2АЮ, 22Х2Г2Р

с низкотемпературным отпуском или термомеханической обработкой в потоке прокатного стана

А500С

химический состав указан в стандарте

горячекатаный без последующей обработки или термомеханически упрочненный в потоке прокатного стана, свариваемый

периодический профиль с 2-я продольными ребрами и поперечными ребрами идущими по винтовым линиям с одинаковым заходом на обеих сторонах профиля

В500С

трехсторонний серповидный или четырехсторонний сегментный периодический профиль без продольных ребер

А400С

химический состав указан в стандарте

горячекатаный без последующей обработки, термомеханически упрочненный в потоке прокатного стана или холодно-деформированный

периодический профиль с 2-я продольными ребрами (или без них) и поперечными ребрами не соединяющимся с продольными

А600С

Ат400С

химический состав указан в стандарте

термомеханически упрочненный в потоке прокатного стана

периодический профиль с 2-я продольными ребрами (или без них) и с расположенными под углом к продольной оси стержня поперечными серповидными выступами, не пересекающимися с продольными ребрами и идущими по многозаходной винтовой линии, имеющей на сторонах профиля разное направление

Ат500С

Ат600

Ат600С

Ат600К

Ат800

Ат800К

Ат1000

Ат1000К

Ат1200

Арматура А-III (А400)

Горячекатаный или термомеханически упрочненный в потоке прокатного стана

периодический профиль с 2-я продольными ребрами (или без них) и поперечными ребрами идущими по винтовым линиям, имеющим с одной стороны профиля правый, а с другой — левый заходы

10ГТ

А400С

22САТЮ, Ст3Гпс, Ст3пс, Ст3сп

Арматура А-III (А400)

20ХСАТЮ, 25Г2С, 28С, 35ГС, 35САТЮ, Ст5пс, Ст5сп

А500С

18Г2С, 20, 20ГС, 20ХСАТЮ, 25Г2С, Ст3Гпс, Ст3пс, Ст3сп

Ат500С

28С, 28САТЮ, Ст5Гпс, Ст5пс, Ст5сп

Арматура Ат-IVn (Ат600)

20ГС, 20ГС2, 20ХСАТЮ, 22С, 22САТЮ, 25Г2С, 26С2, 28С, 28САТЮ

Арматура Ат-IVC (Ат600С)

Арматура Ат-V (Ат800)

20ГС, 20ГС2, 20САТЮ, 20ХСАТЮ, 22С, 22САТЮ, 25Г2С, 26С2, 28С, 35ГС

Арматура Ат-VК (Ат800К)

Арматура Ат-VI (Ат1000)

Арматура Ат-VII (Ат1200)

Выравнивание деревянного основания

Таким же способом, при помощи фанеры, выравниваются и деревянные полы. Но в данном случае, требуется фиксация к основанию с помощью саморезов. Расстояние между саморезами не более 25 см

ВАЖНО: саморезы в соседние листы закручивайте не в шахматном порядке, а напротив друг друга. Головку не утапливать!

Стыки между листами необходимо зашлифовать. Удобнее всего это сделать или при помощи ленточной шлифмашинки, или с помощью болгарки со шлифовальным диском. И только после этого, стыки проклеивают таким же скотчем.

Использование подложки:

При правильной организации подготовительных работ, подложка может потребоваться только в том случае, если линолеум гомогенный и без основы. В квартирах такой материал используют крайне редко. Но для полноты приведём следующие требования к подложкам:

  1. Материал подложки должен быть твёрдым. Из органических это может быть пробка, или материалы на её основе. Из полимерных очень хорошо себя зарекомендовали физически сшитый пенополиэтилен и экструзивный пенополистирол. Мягкие подложки в течение 3-5 месяцев продавятся и перестанут выполнять свою функцию;
  2. Подложка должна быть устойчивой к биологически агрессивным факторам: грибок, плесень. Без дополнительной обработки, таким свойством обладают синтетические материалы;
  3. Толщина подложки, не должна превышать толщину линолеума.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Испытания на растяжение

Испытания на растяжение являются одними из наиболее фундаментальных и распространенных методов механического контроля. При испытании на растяжение применяется растягивающее усилие к материалу и измеряется реакция образца на напряжение. Таким образом, данное исследование определяет насколько прочен материал и насколько он может удлиниться. Испытания на растяжение обычно проводятся на универсальных испытательных машинах, которые являются самым простым и стандартизированным способом произвести данное тестирование.

ООО «Глобалтест» представляет такие компании-производители как Galdabini SPA и Jinan Kason Testing Equipment CO. LTD.

С какой целью проводятся данные испытания?

Мы можем многое узнать о материале из испытаний на растяжение. Измеряя образец во время его растяжения, мы можем получить полные характеристики его свойств на растяжение. При нанесении этих данных на график кривой напряжение/деформация мы можем проследить, как материал реагировал на силу напряжение в каждой точке. Для нас наиболее значимой является точка разрушения, в которой образец разрушается, однако на графике также прослеживается предел пропорциональ­ности, предел текучести, которые предшествуют пределу прочности.

Предел прочности при растяжении

Один из наиболее важных свойств, которые мы можем определить у материала, является его предел прочности при растяжении (UTS). Это максимальное напряжение, которое выдерживает образец во время его испытания. UTS может или не может равняться прочности образца на разрыв, в зависимости от того, является ли материал, из которого изготовлен образец, хрупким, пластичным или обладает свойствами обоих. Иногда материал в лабораторных условиях может быть пластичным, а при вводе его в эксплуатацию и воздействии экстремально низких температур переходить в хрупкое состояние.

Закон Гука

Для большинства материалов в начале испытаний будет прослеживаться линейная зависимость между приложенным усилием или нагрузкой и удлинением. Эта линейная зависимость подчиняется отношению, определяемому как «закон Гука», где отношение напряжения к деформации является постоянным σ/ε = E, где E – это наклон линии в этой области, в которой напряжение σ пропорционально деформации (ε) и называется модулем упругости или модулем Юнга.

Модуль упругости

Модуль упругости – это мера жесткости материала, которая определяется в начальной линейной области кривой. В пределах этой линейной области нагрузка может быть прекращена, и материал в этом случае возвращается к прежнему состоянию, в котором он находился до применения нагрузки. Как только кривая больше не линейна, то закон Гука больше не применяется, и образец уже находится в некоторой деформации. Эта точка, при которой происходит отклонение от линейной зависимости, называется приделом упругости или пропорциональности. С этого момента материал деформируется на любое дальнейшее увеличение нагрузки. Он не вернется к своему первоначальному состоянию, если образец будет снят.

Предел текучести

«Предел текучести» материала определяется как напряжение, приложенное к материалу, при котором начинает происходить пластическая деформация.

Метод смещения

Для некоторых материалов (например, металлов или пластмасс) отклонение от линейной зависимости тяжело идентифицировать. Поэтому для определения данного предела используется метод смещения для определения текучести материала. Эта методика обычно применяется для измерения предела текучести металлов. При испытании металлов в соответствии с ASTM E8 / E8M смещение указывается в процентах от деформации (обычно 0,2%). Напряжение (R), которое определяется из точки пересечения «r», когда линия линейной упругой области (с наклоном, равным модулю упругости), оттянутой из смещения «m», становится пределом текучести.

Альтернативные методы

Кривые растяжения некоторых материалов не имеют четко определенной линейной области. В этих случаях стандарт ASTM E111 предусматривает альтернативные методы определения модуля материала, а также модуля Юнга. Этими альтернативными методами являются секущий и касательный методы.

Деформация

Мы также сможем определить величину растяжения или удлинения, которому подвергается образец во время испытания на растяжение. Она может быть выражена как абсолютное изменения длины или как относительное изменение, называемое «деформацией». Абсолютная деформация (Δl) — измене­ние размера (длины образца при испытаниях на растяже­ние), относительная деформация (ε) — отношение абсолютной дефор­мации к первоначальной длине (l), т.е. ε = Δl/l.

Формирование понятия о пределе прочности металлов

О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина – напряжение разрушения.

Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий