Генераторы пены

Состав пенообразователей

Эффективность тушения пожара зависит не только от марки пенообразователя, но и от правильно подобранного средства по его составу. Выделяют 4 типа пенообразователей.

Синтетические

В основе этих составов – углеводород. Они относятся к ОТВ общего назначения и отличаются высокой насыщенностью. Используются при тушении жилых объектов. Плюс синтетических концентратов – низкая стоимость и расширенные функциональные возможности за счет генерирования пены низкой, средней и высокой кратности. Кроме того, именно у этого типа ПО наиболее длительный срок хранения.

Из минусов отмечают высокую скорость обезвоживания пены, из-за чего при тушении горючих жидкостей возникает необходимость создания на поверхности толстого слоя пены.

Фторсинтетические

Их еще называют пленкообразующие, так как при тушении пожаров пена образует плотную пленку и останавливает горение. Основное назначение ПО этого типа – тушение пожаров на предприятиях по производству и переработке нефти. Преимущество состоит в высокой скорости тушения углеводородных жидкостей и создании надежной преграды для повторного возгорания.

Протеиновые

К ним относятся концентраты на основе растительных добавок, которые используют на пожарах, где необходимы составы, способные долгое время сохранять свою структуру. В протеиновые ПО с целью снижения деятельности гнилостных микроорганизмов добавляют антисептики.

Разработаны также фторпротеиновые концентраты. Они считаются пенообразователями целевого назначения и отличаются самым высоким коэффициентом плотности. Преимуществом этого вида является низкая коррозийная активность. Именно фторпротеиновые составы сочетаются с морской водой и используются в зимнее время при горении нефтепродуктов.

Спиртостойкие

Для тушения полярных горючих жидкостей, например, альдегидов, спиртов, кетонов, невозможно использование вышеперечисленных пенообразователей. В этом случае применяют спиртостойкие концентраты. Они считаются подвидом фторсинтетических ПО, в состав которых введены водорастворимые полимеры, которые обеспечивают на поверхности создание защитной пленки, предотвращающей разрушение пены.

По способу образования пены концентраты бывают:

  • воздушно-механические;
  • барботажные;
  • струйные;
  • химические.

В основе всех концентратов – ПАВ и добавки. После использования они разлагаются на отдельные компоненты. По скорости этого разложения концентраты делятся на быстро, медленно, умеренно и очень медленно разлагаемые.

ГПС-600

Меньшим собратом пеногенератора ГПС-2000
считается ГПС-600
. Он отлично подходит для тушения легко воспламеняющихся веществ в жидкой агрегатной форме. При этом он показывает неплохую производительность (600 л/с). Благодаря этому его в обязательном порядке привлекают к работе в участках с затруднённым доступом. Удивительно, но ГПС-600
имеет совсем небольшой вес – 4, 5 кг. Также в числе его характеристик, заслуживающих внимания, имеется и хорошая глубина тушения, достигающая 5 метров. Корпус пеногенератора гпс-600
выполнен из прочного алюминиевого сплава.

Площадь тушения
ГПС-600
составляет: для ЛВЖ (легковоспламеняющие жидкости) — 75 м2, для ГЖ (горючих жидкостей) — 120 м2. При этом глубина тушения составляет 5 метров.

УКТП ПУРГА

Не стоит обходить своим вниманием и установку УКТП ПУРГА 5
, которая считается эффективным средством для ликвидации пожаров на большой площади. Отметим основные рабочие характеристики это агрегата:

Отметим основные рабочие характеристики это агрегата:

  • производительность пены составляет не менее 21000 литров в одну расчётную минуту;
  • максимальный расход воды – 6 л/м;
  • показатель кратности генерируемой пены равен 70;
  • дальность пенной струи достигает 25 метров.
  • вес ПУРГИ (с корпусом из нержавеющей стали) составляет 8 кг.

Как можно видеть, каждая из представленных модификаций, может достойно показать себя в чрезвычайной ситуации. Делайте правильный выбор, решая вопрос борьбы с пожаром!

Статью прислал: R600

Пеногенератор ГПС-600
необходим для получения воздушно-механической пены, путем преобразования ее из водного раствора пенообразователя.

При этом кратность пены ГПС-600
– 70-100, при этом генератор ГПС-600 прекрасно справляется с тушением жидкостей, которые легко воспламеняются, а производительность позволяет ему справиться с возгоранием в помещениях, которые труднодоступны.

Генератор пены состоит из:

  • корпуса, к которому прикреплено устройство, направляющее пену
  • соединительной головки
  • пакет сеток.

Его корпус изготовлен из сплавов такого металла, как алюминий, так что работа с ГПС-600 довольно проста.

Описывая ТТХ, стоит отметить, что производительность ГПС-600 составляет 600 литров пены с секунду.

Площадь тушения ГПС-600

  • ЛВЖ – 75 м 2
  • ГЖ – 120 м 2

Глубина тушения
5 метров

В целом, производительность ГПС-600 находится весьма на приличном уровне. Вес установка ГПС-600 имеет небольшой – всего 4,5 кг, при этом площадь тушения весьма внушительна.

Расход ствола ГПС-600

  • по пене (пенообразователь) составляет 0,36 л/с
  • по воде – 5,64 л/с.

Пеногенератор ГПС-200
немного уступает своему «большому» собрату ГПС-600. Это, в первую очередь, касается производительности, которая для этого устройства составляет в три раза меньше, то есть 200 л/с пены.

Пример подачи пены из ГПС-600

Площадь тушения ГПС-200

  • ЛВЖ – 25 м 2
  • ГЖ – 40 м 2

Корпус и конструкция этого устройства точно такая же, как и у уже описанного нами выше устройства.

Вес ГПС составляет всего 2,4 кг, работать с пеногенератором очень просто. При этом дальность подачи пены составляет 10 метров.

Самым большим из пеногенераторов средней кратности является ГПС-2000, по своей конструкции не слишком отличается от других пеногенераторов. Разница между ними только в характеристиках. Поскольку он обладает самой большой производительностью – 2000 л/с по пене, соответственно имеет и самый значительный вес – 13 кг. Благодаря тому, что дальность подачи пены у ГПС-2000 составляет 14 метров, его целесообразно применять при больших возгораниях или в больших помещениях, а так же на пожароопасном производстве.

Из-за размеров внушительными также являются и показатели расхода по пенобразователю и по воде.

Площадь тушения ГПС-2000

  • ЛВЖ – 250 м 2
  • ГЖ – 400 м 2

Отдельно стоит отметить установку для тушения крупных пожаров УКТП Пурга-5.

По своим размерам и некоторым ТТХ Пурга-5 соответствует пеногенератору ГПС-600.

Однако, это касается только расхода водного раствора при работе, а также рабочему давлению.

Другие параметры более мощные, поэтому площадь тушения ствола Пурга-5 намного больше.

  • дальность подачи струи пены составляет 20-25 метров
  • расход пенообразователя 0,36 л/c
  • производительность по пене составляет 21000 литров в минуту.
  • кратность пены 70
  • Расход воды (водного раствора пенообразователя), 5-6 л/с
  • габаритные размеры 610х365х310

Корпус Пурга-5 изготовлен из нержавеющей стали и покрыт слоем порошковой краски, вес составляет 8 кг.

Проведенные испытания УКТП Пурга-5 показывают большую производительную мощность данного пеногенератора. Особенно это актуально при тушении пожара на крупной по территории площади, или же при ликвидации пожара причиной которого стали легковоспламеняющиеся жидкости.

Эффективность пожаротушения зависит в первую очередь от комплектации пожарного оборудования и применения специальных средств борьбы с пожаром. Одними из наиболее распространенных и действенных устройств для ликвидации огня являются ручные пожарные стволы. Воздушно-механический способ подачи пены ручными стволами
позволяет значительно ускорить процесс пожаротушения.

Тушение пеной весьма результативный способ тушения единовременно нескольких видов (классов) пожаров за кратчайшее время. Использование пенных пожарных стволов
даёт возможность применять результативно одинаковый объём воды, в сопоставлении, например, со стандартными водяными стволами.

Сравнение компрессионной пены и воды

Наиболее ярко проявляются преимущества новой технологии компрессионной пены в сравнении с водой. Компрессионная пена представляет собой плотную мелкоячеистую структуру, с толщиной покрытия – 1-2 сантиметра, не больше. Пена невероятна стойка и обладает высокими адгезионными свойствами, другими словами, липкостью. Именно эта способность компрессионной пены к прилипанию и составляет основное отличие от воды.

Эффективность использования воды для тушения возгораний составляет примерно 10%. Это означает, что лишь одна десятая часть от объема используется для охлаждения и изоляции топлива от кислорода. Остальные 90%, благодаря физическим свойствам воды, собираются в капли и стекают, тем самым нанося  дополнительный вред нижележащим помещениям в здании. Если же рассмотреть актуальный вопрос лесных пожаров, то в этом случае эффективность воды как огнетушащего вещества составляет меньше 5%.

При использовании компрессионной пены по технологии NATISK, эффективность огнетушащего вещества составляет порядка 80%. Такой показатель возможен благодаря особым физическим свойствам компрессионной пены, а именно адгезивности. При тушении пожара, ствольщик получает в свой арсенал новые возможности. При нанесении на потолок и стены, пена изолирует смежные помещения от воздействия высоких температур, при этом пена долго держится даже на вертикальных поверхностях: от одного часа на металлической до двух-трех часов на деревянной. Каждый пузырь компрессионной пены имеет стойкую связь с соседними, что обуславливает высокую стойкость пены. В результате получается тонкое (около 1-2 сантиметров) и прочное «одеяло», которое буквально «укрывает» горящую поверхность, прекращая доступ кислорода в очаг возгорания.

Вместе с тем, пена обладает и лучшими свойствами воды – она охлаждает очаг, а благодаря смачивателям, включенным в ее состав – проникает в поры и трещины поверхности, предотвращая тление материала и его повторное возгорание.

Выбор пенообразователя

При выборе ПО учитывают степень пожарной опасности и общую противопожарную защиту объекта.

  1. Если произошло возгорание умеренного количества горючих жидкостей, то применяют ПО общего назначения, которые подходят также для подготовки смачивающего раствора.
  2. При пожаре на нефтебазе или предприятиях нефтетранспортировки используют ПО целевого назначения.
  3. На объектах с использованием полярных и неполярных жидкостей используют 2-3 типа ПО с акцентом на спиртостойкие концентраты.
  4. При выборе ПО учитывают концентрацию рабочих растворов 6%, 3% или 1%.
  5. Если ПО классифицирован как брак, его допустимо использовать исключительно в качестве смачивателя.

Один из ключевых моментов выбора ПО – кратность полученной пены. Низкократные составы используют для тушения ГСМ и охлаждения оборудования. Пена средней кратности необходима на объемных пожарах. Высокократный состав подходит для тушения больших площадей.

Необходимые условия

Это те параметры системы, друзья, которым мы обязаны соблюсти для обеспечения

нормальной работоспособности системы пенного ПТ пеной высокой кратности.

Перечислим их.

  • В смесителе дозирующей системы потери давления должны составлять не более 0,2 МПа.
  • Предусматривается запас пеногенераторов, хранимых на складе, в количестве не менее 10 % от числа работающих устройств, в соответствии с п. 5.1.25 ГОСТ Р 50800-95.
  • Устанавливается задержка автоматического срабатывания пенной АУПТ для возможности своевременной эвакуации рабочего персонала.
  • Трубопроводы выполняются из пластика или оцинкованной стали и должны иметь сертификат качества.
  • Давление перед диктующим эжекционным генератором высокократной пены составляет не меньше 0,5 МПа.
  • Предусматривается специальная тара для сбора раствора пенообразователя, пролитого, либо находящегося в трубопроводе после срабатывания АУПТ.
  • На питающих трубопроводах перед генераторами устанавливаются пожарные фильтры с узлом для обслуживания и размером ячейки фильтра 2×2 мм, согласно п. 6.3.1.8 СП 5.13130.2009.

Эжекционные ручные стволы

Данный вид имеет некоторые преимущества перед аналогичными устройствами: возможность производить пену разной кратности, отсутствие надобности в дополнительных приборах для нагнетания воздуха, неприхотливость конструкция. Наиболее распространенными являются следующие пожарные стволы:

  • СВП.
    Это наиболее простой и часто используемый инструмент для тушения огня. С одной стороны ствол имеет соединительный штекер, при помощи которого крепится к рукаву. С другой стороны закрепляется труба, в которую подается пенная смесь.
  • СВПЭ-4.
    Предназначено устройство для производства пены низкой кратности. Поступление воздуха осуществляется через отверстия в его корпусе. При прохождении смеси в корпусе образуется вакуум, вследствие этого, требуемый объем воздуха всасывается внутрь ствола. Производительность по пене данного устройства – 4 м3/мин, расход воды – 7,9 л/с.
  • СВПЭ-8.
    Основные отличия данной установки от предыдущей в более высокой производительности по пене и в увеличенном расходе воды (эти показатели вдвое выше).

5.2. Определение кратности и устойчивости пены низкой и средней кратности

Кратность пены
характеризуется величиной, равной отношению” объема пены к объему раствора,
содержащегося в пене.

В зависимости от величины
кратности получаемую из пенообразователей пену подразделяют на:

пену низкой кратности (не
более 20);

пену средней кратности (от
20 до 200);

пену высокой кратности
(более 200).

За устойчивость пены
принимают ее способность к сохранению первоначальных свойств. Сущность метода
определения устойчивости пены заключается в установлении времени разрушения 50
% объема пены или времени выделения 50 % жидкой фазы.

5.2.1. Аппаратура
и материалы

Для определения используют
установку (черт. 1), в комплект которой входят:

Схема установки для
определения кратности и устойчивости пены

1 — пенный пожарный
ствол; 2 — рукав напорный; 3, 4 — патрубок с манометром; 5 — насос; 6 — рукав
всасывающий; 7, 8 — емкость; 9 — весы

Черт. 1

пенный пожарный ствол для
получения пены различной кратности: генератор пены средней кратности ГПС-100 с
распылителем (черт. 2), позволяющим обеспечить
расход раствора (1 ± 0,1) дм3/с при давлении перед распылителем (0,6
± 0,01) МПа (6 ± 0,1) кгс/см2) или ствол для пены низкой кратности
со сменными распылителями ()
позволяющими обеспечить расход раствора от 0,2 до 1,0 дм3/с при
давлении перед распылителем (0,6 ± 0,01) МПа (6 ± 0,1) кгс/см2);

насос водяной,
обеспечивающий производительность от 0,2 до 1,0 дм3/с при давлении
на выходе (0,6 ± 0,01) МПа ((6 ± 0,1) кгс/см2);

рукав пожарный напорный
длиной не более 2 м;

рукав пожарный всасывающий
по ГОСТ

5398 длиной 1,8 м;

емкость металлическая
вместимостью не менее 100 дм3;

емкость металлическая
вместимостью до 200 дм3 массой не более 12 кг;

весы по ГОСТ 23676 с
пределом взвешивания не менее 20 кг и погрешностью не более 0,05 кг;

манометр по ГОСТ 2406 с
верхним пределом измерении 1,0 МПа (10 кгс/см2) и ценой деления 0,04
МПа, (0,4 кгс/см2) установленный на выходе насоса на патрубке;

термометр по ГОСТ
28498 с диапазоном измерений от 0°С до 100°С и ценой деления 1°С;

цилиндр 1-2000 по ГОСТ
1770 с ценой деления 20 мл;

секундомер с пределом
измерений 60 мин и ценой деления 0,2 с;

вода питьевая по ГОСТ
2874 или по нормативно-технической документации на пенообразователь.

Генератор пены средней
кратности ГПС-100

Распылитель

1 — корпус; 2 — пакет
сеток; 3 — распылитель

Черт. 2

Пожарный ствол для пены
низкой кратности

1 — труба; 2 –
успокоитель; 3 — муфта; 4, 7 – штуцер; 5 — распылитель; 6 — смеситель; 8 —
переходник; 9 — головка напорная ГМ-50

Черт. 3

5.2.2. Подготовка к проведению испытаний

В емкости 7 () приготавливают 100 дм3
рабочего раствора испытуемого пенообразователя. Всасывающий рукав опускают в
приготовленный раствор и заполняют линию кратковременным включением насоса.
Проверяют работоспособность установки. Определяют массу пустой емкости 8.

Перед каждой серией
определений осуществляют контроль температуры рабочего раствора
пенообразователя (20 ± 2)°С.

5.2.3. Проведение испытаний

Условия окружающей среды,
при которой суммарная погрешность методики выполнения определений находится на
уровне заданной следующие: температура воздуха от 15 до 25°С, давление от 84 до
106,7 кПа, относительная влажность воздуха от 40 до 80 %.

Приготовленный рабочий
раствор подают под давлением (0,6 ± 0,01) МПа ((6 ± 0,1) кгс/см2) в
напорный рукав, на выхода которого установлен пенный пожарный ствол. После
получения устойчивой струи из генератора пены средней кратности (ГПС) наполняют
емкость для сбора пены и взвешивают ее. При этом должно быть равномерное
заполнение всего объема, не допуская образования пустот. Массу пены определяют
по разности веса заполненной и пустой емкости.

Для низкократной пены
емкость заполняют в течение 5-7 с. С помощью линейки с пределом измерения 100
см определяют высоту пены с погрешностью до 1 см и вычисляют объем низкократной
пены (V) в кубических сантиметрах по формуле

где Н — высота пены, см;

d — диаметр емкости для
сбора пены, см. Кратность пены (К) вычисляют по формуле

где Vп — объем
пены, дм3;

Vp
— объем раствора пенообразователя, дм3, численно равный массе пены,
кг.

Для определения устойчивости
пены средней кратности используют цилиндрическую емкость для сбора пены (h:d) =
1,5 вместимостью (200 ± 0,5) дм3, при этом значение кратности пены
должно быть не менее 50.

После равномерного
заполнения из ГПС емкости пеной фиксируют время разрушения 50 % объема пены.

5.2.4. Обработка результатов

За окончательный результат
принимают среднее арифметическое двух определений. Допустимое расхождение между
результатами повторных испытаний, полученных одним оператором при постоянных условиях
испытаний с доверительной вероятностью 0,95, не должно превышать 10 %.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Генераторы должны изготовляться в соответствии с требованиями настоящего стандарта, ГОСТ 12.2.037 по чертежам, утвержденным в установленном порядке.

2.2. Генераторы должны выдерживать гидравлическое давление 0,9 МПа (9 кгс/см). При этом не допускается появление следов воды (в виде капель) на наружных поверхностях корпусов распылителей и течь в местах соединений.

2.3. При работе генератора должно обеспечиваться полное заполнение пеной контура выхода из насадка.

2.4. Сетки генератора должны быть прочно закреплены в корпусах и равномерно натянуты.Прогиб натянутых сеток от груза массой (2±0,1) кг, расположенного на площади 40 см в центре сетки, а также после испытаний гидравлическим давлением перед распылителем 0,9-1,0 МПа (9-10 кгс/см) должен быть не более:

2 мм — для ГПС-200;

5 мм — для ГПС-600;

10 мм — для ГПС-2000.

2.5. Для кассеты должна быть применена сетка с номинальным размером стороны ячейки в свету 0,8-1,2 мм по ГОСТ 3826 , изготовленная из проволоки диаметром 0,3-0,4 мм из высоколегированной стали, или сетка по ГОСТ 6613 из полутомпаковой проволоки с таким же размером стороны ячейки и диаметром проволоки.

2.6. Генераторы ГПС-600, предназначенные для комплектации пожарной техники, должны иметь плечевой ремень и ручку 8 (черт.2).

2.7. Корпуса генераторов не должны иметь вмятин и других повреждений.

2.8. Литые детали генераторов должны быть изготовлены из алюминиевого сплава марки АК7 (АК7) или АК7 (АЛ9) по ГОСТ 1583 или из сплавов других марок с механическими и антикоррозионными свойствами, не уступающими указанным сплавам.

2.9. Предельные отклонения размеров отливок деталей генераторов, мм:

номинальных

размеров

до 60 мм включ.

св. 60 до 100 мм

св. 100 до 160 мм

св. 160 до 250 мм

2.10. Поверхности литых деталей не должны иметь трещин, посторонних включений и других дефектов, влияющих на прочность и герметичность генераторов и ухудшающих внешний вид.

2.11. Сварные швы не должны иметь посторонних включений, наплывов, непроваров и прожогов.

2.12. Метрические резьбы должны выполняться по ГОСТ 24705 с полями допусков по ГОСТ 16093 : 7Н — для внутренних резьб и 8 — для наружных резьб.Трубные цилиндрические резьбы — по ГОСТ 6357 , класс В.Резьбы должны быть полного профиля, без вмятин, забоин, подрезов и сорванных ниток.Не допускаются местные срывы, выкрашивания и дробления резьбы общей длиной более 10% длины нарезки, при этом на одном витке — более 0,2 его длины.

2.13. Стальные детали генераторов, кроме изготовляемых из листового проката и труб, должны иметь покрытие Ц18.хр. для исполнения У и Ц24.хр. — для исполнений ХЛ и Т; крепежные детали — покрытие Ц9.хр. Покрытия — в соответствии с требованиями ГОСТ 9.301 .

2.14. Кольца кассет должны быть изготовлены из стали 12Х18Н10Т по ГОСТ 5632 или из стали других марок с механическими и антикоррозионными свойствами, не уступающими указанной стали.

2.15. Уплотнительные прокладки генераторов должны быть изготовлены из картона марки А по ГОСТ 9347 или другого материала, обеспечивающего герметичность соединений.

2.16. Соединительные головки — по ГОСТ 28352 .

2.17. Резьбовые части деталей должны быть смазаны солидолом по ГОСТ 4366 .

2.18. Наружные и внутренние поверхности корпусов распылителей, насадков, а также наружные поверхности стоек должны быть покрыты эмалью красного цвета марки ПФ-115 по ГОСТ 6465 или другим лакокрасочным материалом того же цвета, по защитным свойствам не уступающим указанной эмали.Кассеты генераторов и выходные цилиндрические отверстия корпусов распылителей не окрашиваются.

2.19. Генераторы должны соответствовать следующим показателям надежности:гамма-процентный (= 90%) полный срок службы не менее 8 лет;гамма-процентный (= 90%) срок сохраняемости не менее 1 года;вероятность безотказной работы для генераторов ГПС-200 и ГПС-600 за 50 ч, ГПС-2000 за 25 ч — 0,993.

Действия сотрудников боевой единицы на ликвидации возгорания:

  • Командир. Он возглавляет ГДЗС, осуществляет работой отделения в целом: ликвидация огня, эвакуация людей, спасение имущества и другие необходимые оперативные действия.
  • №1. Обязанности пожарного номер 1 или старшего расчета – это определение рабочей или магистральной линии. Его основная задача – работа с пожарным стволом. По мере возможности – принимает участие в демонтаже конструкций и спасении людей.
  • №2. Второй пожарник помогает старшему в прокладке лини и работе со стволом. В его компетенции лестница, так же он должен работать с инструментом по электрической проводке. По мере возможности – помогает вскрывать конструкции и спасать людей.
  • №3. Помогает старшему и первому расчета прокладывать линию, если требуется разветвление – занимается этим. Помогает второму устанавливать лестницу, контролирует безопасность действий, помогает демонтировать конструкции и эвакуировать людей.
  • №4. Сначала работает с шофером. Они вместе устанавливают машину на источник воды. Затем присоединяется к команде: помогает в прокладке линий и разветвлений, спасает людей, демонтирует конструкции, контролирует безопасность, устанавливает мостики.
  • Водитель. По табелю пожарного расчета водитель при помощи четвертого номера устанавливает машину на источник воды. Включает насосную станцию, обеспечивает подачу огнетушащего вещества в рукав.

Теоретическое обучение

Расход — пенообразователь

Расход пенообразователя определяется по количеству одновременно работающих пеногенераторов и расчетному времени тушения. Общее количество пенообразователя, необходимое для обеспечения работы установки, определяется с учетом рабочего запаса и двойного резерва.

Гидравлические показатели пеногенераторов высокократной пены.

Расход пенообразователя определяется по количеству одновременно работающих пеногенераторов и расчетному времени тушения.

Наличие расход пенообразователя и соответствие его нормативным требованиям ( проектным решениям) — производится замер расхода пенообразователя в каждой мембранной дозирующей емкости при помощи расходомера.

Величина расхода пенообразователя зависит от величины перепада давления, создающегося в трубе Вентури и изменяющегося с изменением расхода воды через последнюю. Вода, поступающая в емкость, выходит из трубки через распылитель, что обеспечивает хорошее гашение энергии потока воды и равномерное распределение ее по площади поперечного сечения емкости. Дальнейшее выравнивание скорости потока достигается с помощью слоя поропласта. Поток воды, проходящий через слой поро-пласта, имеет малую скорость, которая исключает возможность перемешивания воды с пенообразователем. Ввиду разности удельного веса воды и пенообразователя, а также малой и равномерной скорости движения, вода постоянно находится над пенообразователем и не смешивается с ним.

В табл. 2 представлен расход эжектируемого пенообразователя в зависимости от напора воды.

Возврат промпродуктов в начало процесса позволяет сократить расход пенообразователя.

Основные параметры установки пенотушения фирмы Svenske Skums lochnings АВ.

Дозатор пенообразователя 4 с клапаном И, регулирующим расход пенообразователя, обеспечивают автоматическое дозирование определенного количества пенообразователя независимо от числа включенных установок.

Диаметр отверстий дроссельных шайб зависит от избыточного давления и расхода пенообразователя, необходимых для образования 4 — 6 % — ного раствора, и равен 12 — 22 мм.

ИМ-68, оказывается в 1 5 — 2 раза ниже расхода других пенообразователей.

Схема установки с питанием от резервуара с раствором пенообразователя.

Установка пенного пожаротушения с питанием только от гидропневмобака предусматривается в случаях, когда расход пенообразователя небольшой. Готовый раствор пенообразователя хранится в гидропневмобаке под давлением сжатого воздуха или инертного газа. При срабатывании побуди тельных устройств раствор из гидропневмобака поступает к пенообразующим насадкам.

Наличие расход пенообразователя и соответствие его нормативным требованиям ( проектным решениям) — производится замер расхода пенообразователя в каждой мембранной дозирующей емкости при помощи расходомера.

Из табл. 4 и 5 видно, что эти смеси обладают высокой текучестью и достаточной прочностью при низкой влажности и расходе пенообразователей в 2 — 3 раза меньшем, чем смеси, приготовленные при атмосферном давлении.

ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1. Транспортирование генераторов допускается транспортом любого вида в соответствии с правилами, действующими на транспорте данного вида.Транспортирование генераторов в универсальных контейнерах и автомобильным транспортом может осуществляться без упаковки в тару с предохранением от механических повреждений.

7.2. Консервация выходных отверстий и стальных деталей корпусов распылителей — по варианту защиты В31 ГОСТ 9.014 .

7.3. Условия хранения генераторов исполнений У и X — по группе 2, исполнения Т — по группе 3; условия транспортирования — по группе 4, 6, 7, 9 по ГОСТ 15150 .

Дополнительные преимущества

В состав компрессионной пены NATISK входит небольшое количество воды. Отсюда –  низкий вес и важные для пожарного дополнительные свойства, недоступные ранее:

  • низкая отдача при открытии ручного ствола и подаче тушащего агента, легкость удержания пожарного ствола:
  • низкий вес рукава, заполненного компрессионной пеной, простота маневрирования;
  • за счет низкого веса, по сравнению с водой, с помощью нормального давления, возможно подать компрессионную пену по сухотрубу на высоту до 250 метров;
  • низкое парообразование, улучшение видимости при тушении, повышение точности и снижение риска ожогового травматизма пожранных.

Технология приготовления

Процесс приготовления делится на два периода:

  1. Столярный клей стоит приготовить за сутки до главного процесса. Для этого его следует издробить, залить водой соотношением 1:10.
  2. Далее следует приготовление канифольного мыла. Берется 0,016 кг соды, разбавляется в воде до плотности смеси 1,2 кг/дм³. Данный раствор проваривают, потихоньку добавляя 0,063 кг подробленной сосновой канифоли. Обычно на 1 литр содового раствора уходи 1,5 кг канифоли. Раствор должен кипеть около двух часов. Систематически помешивайте его во время варения, пока не растворятся все ингредиенты, и смесь не станет однородной.

Когда приготовленная масса остынет, ее постепенно добавляют в 0,06 кг разведенного клея. Он увеличивает вязкость, устойчивость смеси. Затем все тщательно перемешивается. Данной пропорции хватает на один кубический метр пенобетона.

Задачи

Задачи, возложенные на пожарные насосно-рукавные автомобили, во многом схожи с тем, что выполняют все транспортные средства общего применения.

Непосредственно от АНР требуют:

  • доставку на место возгорания боевого расчета и комплекта аварийно-спасательного оборудования;
  • подачу воды из удаленного водоисточника на расстоянии 1.5 км от места пожара;
  • работу на водоисточниках с трудными условиями забора: на обрывистых берегах, мостах, эстакадах, причалах;
  • высокую скорость прокладки рукавов на расстояние до 40 км/ч;
  • выполнения задач по откачке воды при ЧС природного генеза.

Кроме специфических задач, которые ставятся перед этим видом спасательной техники, выделяют и особенности ее эксплуатации. После завершения операции подъем рукавов осуществляется механизировано. Максимальная глубина открытого водоисточника относительно уровня модуля должна составлять не более 15 метров или 60 метров от поверхности воды до насоса.

Методика расчета тушения

Методику расчета для высокократной пены опишем пошагово.

  1. Сначала вычисляем расчетный объем пространства V (м3), которое подлежит заполнению пеной. Этот объем определяем как произведение высоты заполнения помещения на его периметр. Исключаем здесь объем непроницаемых несгораемых сплошных строительных конструкций.
  2. Выбираем марку и тип пеногенератора, определяется производительность агрегата – величина производимого раствора пенообразователя q, л/мин.
  3. Вычисляем расчетное количество пеногенераторов (высокократная пена), по формуле:

n = (a * V * 1000) / (q * t * K),

где

  • K – показатель кратности нашей пены (используем технический паспорт пеногенератора);
  • t – наибольшее время заполнения огнетушащим веществом всего объема охраняемого помещения, мин;
  • a – коэффициент разложения ОТВ.

Сам коэффициент a определяем по формуле:

a = K1 * K2 * K3

где

  • K1 – коэффициент учета усадки пены – его принимаем равным 1,2, если высота заполнения пеной не больше 4 м и 1,5, если высота заполнения до 10 м, значение устанавливается экспериментально, если высота больше 10 м;
  • K2 – коэффициент, учитывающий утеку пены – если нет открытых проемов, принимаем его равным 1,2, когда такие проемы есть – экспериментально;
  • K3 – коэффициент учета влияния дымовых примесей на разложение пены, если надо учитывать влияние продуктов горения жидкого углеводорода, принимаем его равным 1,5.

Максимальное время, за которое все защищаемое помещение заполняется огнетушащей пеной,

принимается равным не более 10 мин.

  1. Рассчитываем производительность системы, исходя из количества образуемого раствора пенообразователя, м3/с, по формуле:

Q = (n * q) / (60 * 103)

  1. Дальше по технической документации мы определяем объемную концентрацию пенообразователя в растворе c, %.
  2. Вычисляем величину расчетного количества пенообразователя, м3, по формуле:

VПО/расч = c * Q * t * 10-2 * 60

  1. Рассчитываем объем резервуара для хранения пенообразователя. Здесь учитываем:
  • стопроцентный запас пенообразователя, VПО/резер, м3, согласно п. 5.9.21 СП5.13130.2009;
  • полный объем заполнения трубопроводов пенной АУПТ, VПО/заполн, м3, в соответствии с п. 5.9.22 СП5.13130.2009. Эту величину определяем как произведение времени (3 мин) на расход пенообразователя;
  • минимальный уровень в резервуаре для хранения пенообразователя VПО/мин.ур, м3. Учитываем этот показатель только для резервуаров с атмосферным давлением, определяем его равным 10-ти процентам от полного объема выбранного из типоряда резервуара.
  1. Рассчитываем объем пенообразователя, который рекомендован к закупке, по формуле:

VПО/закупки = VПО/расч + VПО/резер + VПО/заполн + VПО/погрешн + VПО/мин.ур., м3

  1. Таким же образом рассчитываем объем воды:

Vводы/расч = (VПО/расч / с) * (100 — c), м3

Вычисление параметров АУПТ высокократной пеной

Теперь простой формулой мы вычисляем расчетный объем заполнения помещения высокократной пеной:

V = S * hзаполн = 900 * 5 = 4500 м3

Чтобы высокократная пена в охраняемом помещении распределялась равномерно по всему объему,

в качестве пеногенератора используем эжекционный тип с номинальным расходом ОТВ 400 л/мин,

номинальным входным давлением 0,5 МПа и кратностью пены 400.

Вычисляем расчетное количество высокократных пеногенераторов для группы резервуаров:

n = (1,5 * 1,2 * 1,5 * 4500 * 1000) / (400 * 10 * 400) = 7,59 шт.

Конечно же, не забудем округлить это значение до ближайшего целого числа в большую сторону – 8 шт.

Теперь мы можем определить производительность системы относительно раствора пенообразователя:

Q = (8 * 400) / (60 * 103) = 0,05 м3/с = 180 м3/ч = 180000 л/ч = 3000 л/мин.

Расчет дозирования пенообразователя

Здесь мы исходим из того, что система дозирования ПО должна обеспечивать работоспособность автоматической установки пенного ПТ с учетом расхода 3000 л/мин.

Что касается объема пенообразователя (объем резервуара для хранения),

рекомендуемого к закупке, то он вычисляется по формуле, приведенной выше.

Расчетное количество пенообразователя для 10-ти минут работы установки,

учитывая погрешность, составляет:

VПО/расч = 1,2 м3

Запас пенообразователя в хранилище:

VПО/резер = 1,2 м3

Объем пенообразователя для наполнения сухотрубов за 3 минуты:

VПО/заполн = 0,36 м3

Отсюда мы получаем общее необходимое количество пенообразователя:

VПО/общ = VПО/расч + VПО/резер + VПО/заполн = 1,2 + 1,2 + 0,36 = 2,76 м3

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий