Что такое лямбда зонд (датчик кислорода)

Причины неисправности

Почему данный механизм может выходить из строя? Первая причина – это естественный износ. Если пробег автомобиля составил более 50 тысяч километров, ресурс механизма может подойти к концу. Но также датчик ломается по другим причинам:

  • При обрыве проводов, что идут на датчик. В таком случае сигнал попросту не поступит на ЭБУ.
  • При механическом повреждении. Многие датчики устанавливаются в районе днища. Если автомобиль проехал через глубокое препятствие, возможно повреждение измерительного элемента. При малейшей деформации разрушается гальванический элемент широкополосного датчика кислорода.
  • При перегреве датчика. Это может произойти из-за неполадок в топливной системе автомобиля. Обычно это некорректный угол зажигания либо неправильный тюнинг двигателя (например, не та прошивка ЭБУ при чип-тюнинге).
  • При загрязнении чувствительного элемента. Если закоксовывается верхний слой с платиновым покрытием, ионы не будут улавливаться широкополосным датчиком. Что это может быть? Обычно загрязнения происходят из-за попадания масла в камеру сгорания. данная копоть затем обволакивает стенки выпускного коллектора, а также наконечника датчика. Еще загрязнения могут происходить из-за использования некачественного бензина, который содержит много свинца.

  • При разгерметизации корпуса. Такое бывает редко, но данную неисправность не следует исключать.
  • При попадании антифриза в цилиндры двигателя. это происходит из-за пробоя прокладки головки блока. В результате газы приобретают характерный белый цвет. Помимо этого, меняется и концентрация кислорода в выхлопе. Простыми словами, датчик начинает «сходить с ума». ЭБУ готовит неправильную смесь.

ВЛИЯНИЕ НЕИСПРАВНОСТИ КИСЛОРОДНОГО ДАТЧИКА ЛЯМБДА: ПРИЧИНА ОТКАЗА

Существует несколько причин, по которым лямбда датчик может выйти из строя:

  • Внутренние и внешние замыкания лямбда зонда.
  • Нет заземления / напряжения.
  • Перегрев зонда.
  • Нагар / загрязнение.
  • Механическое повреждение датчика
  • Использование этилированного топлива / присадок

Существует ряд типичных неисправностей лямбда-датчиков, которые происходят наиболее. В следующем списке приведены причины неисправностей выявленных в результате диагностики:

Неисправности лямбда датчика Причины
Защитная трубка или корпус зонда забиты остатками масла Несгоревшее масло попало в выхлопную систему, например, из-за неисправных поршневых колец или маслосъёмных колпачков
Нет доступа к эталонному воздуху, воздух не поступает. Зонд установлен неправильно, контрольное отверстие для воздуха заблокировано
Повреждение в результате перегрева Температура превысила 950 °C из-за неправильно выставленного зажигания или проблемы с регулировкой клапанов
Плохое соединение на контактах Окисление проводов датчика
Обрыв проводки Плохо проложенные провода, перетирание кабеля, укусы грызунов
Отсутствие заземления Окисление, коррозия в выхлопной системе
Механические повреждения При установке перетянут датчик. Момент затяжки превышен.
Химическое старение Частые непродолжительные поездки
Свинцовые отложения Использование этилированного топлива

Диагностика неисправностей для датчика кислорода Лямбда: основные принципы

Автомобили, оснащенные системой самодиагностики, могут обнаруживать неисправности, возникающие в цепи управления, и сохранять их в памяти неисправностей. Обычно это отображается через индикаторную лампу двигателя – «чек», «check engine». Память неисправностей затем может быть считана с помощью сканера через разъём OBD-2. Однако некоторые системы не могут определить, относится ли эта неисправность к неисправному датчику или это неисправность кабеля. В таком случае дальнейшие испытания должны быть выполнены механиком в автосервисе.

Для более точной диагностики через EOBD, мониторинг при компьютерной диагностике лямбда-датчика был расширен, чтобы считывать следующие пункты диагностики:

  • Разомкнутая цепь;
  • Эксплуатационная готовность;
  • Короткое замыкание на массу блока управления;
  • Короткое замыкание на плюс;
  • Обрыв кабеля и срок службы датчика кислорода лямбда.

Для диагностики сигналов от лямбда-датчика блок управления использует форму частоты сигнала. Для этого блок управления рассчитывает следующие данные:

  • Максимальное и минимальное обнаруженное значение напряжения датчика кислорода;
  • Время между положительным и отрицательным положением,
  • Лямбда-контроллер, регулирующий соотношение в топливо-воздушной смеси – богатая или бедная;
  • Определение порога лямбда-контроля,
  • Напряжение датчика и длительность периода.

О чем говорят максимальные и минимальные напряжения датчика кислорода?

При запуске двигателя все старые максимальные / минимальные значения в электронном блоке управления удаляются. Во время работы минимальные / максимальные значения отображаются в определенном диапазоне нагрузки / скорости

Амплитуда напряжения датчика: максимальное и минимальное значение больше не достигается, обнаружение насыщенности / обеднения топливной смеси больше невозможно.

Время отклика на изменение напряжения

Если напряжение датчика превышает контрольный порог, начинается измерение времени реакции между положительным и отрицательным состоянием. Если напряжение датчика не достигает контрольного порога, измерение времени прекращается. Период времени между началом и концом измерения времени измеряется счетчиком.

Время отклика: если датчик реагирует слишком медленно на изменение состава смеси то не отображает состояние в нужное время.

Определение старого или загрязненного лямбда зонда

Кислородный датчик может быть неисправенесли он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.

Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.

Описание устройства и где находится

С появлением систем электронного впрыска бензина перед конструкторами встала задача корректировки состава топливной смеси. Для этого стали применяться датчики кислорода или лямбда-зонды. Устройства поддерживают состав топливной смеси в определенных переделах, что позволяет обеспечивать максимальную эффективность каталитического нейтрализатора. При иных составах смеси нейтрализатор начинает работать некорректно и выходит из строя.

В зависимости от конструкции выхлопной системы используется один или два датчика:

  1. Первый установлен непосредственно в выхлопном коллекторе и замеряет состав выхлопных газов перед каталитическим нейтрализатором. На ранних системах этот девайс был единственным.
  2. С введением нормативов Евро-3 стал применяться второй зонд, расположенный после нейтрализатора. Электронный блок управления анализирует данные от двух зондов и косвенно оценивает эффективность работы катализатора, а также корректирует состав смеси.

Производители установили для изделий срок службы:

  • зонд без спирали подогрева — не более 80 тыс. км;
  • узел с подогревом — до 100 тыс. км;
  • планарные (широкополосные) зонды — до 160 тыс. км.

Заявленный ресурс зондов не является точным. Срок работы устройств зависит от множества факторов и может быть меньше или больше указанных значений.

За что отвечает лямбда зонд

Попросту говоря, лямбда-зонд, он же О2 датчик — это датчик, оценивающий количество не сгоревшего топлива и кислорода в выхлопной системе автомобиля. Хотя лямбда-зонды используют также в других областях, мы в этой статье будем говорить сугубо об автомобильных датчиках кислорода.

Для чего же нужен этот датчик кислорода? Так называемые катализаторы, которые уменьшают долю вредных веществ в выхлопах, имеются в данный момент в каждой более-менее современной машине. Лямбда-зонд контролирует количество кислорода в катализаторах, таким образом, продлевая срок их действия. Также он существенно влияет на количество потребляемого вашим автомобилем топлива и улучшает работу двигателя.

Если упомянуть конкретные факты, то известно, что топливо эффективно сгорает только при правильном соотношении топлива и воздуха в топливной смеси. В противном случае (если воздуха будет меньше или же больше) будут изнашиваться и приходить в негодность катализаторы. Поэтому, лямбда-зонд непосредственно влияет на выхлопную систему автомобиля.

Схема устройства

Рассмотрим схему зонда, дающую представление о размещении узлов. Знание конструкции позволяет понять места расположения деталей, подверженных поломкам.

Пример конструкции зонда

Конструкция включает:

  • 1 — металлический штуцер, предназначенный для установки зонда, на внешней поверхности имеются грани под ключ, ниже расположена резьба;
  • 2 — керамический изолятор;
  • 3 — уплотнительный элемент для ввода жгута проводов;
  • 4 — сигнальные провода;
  • 5 — металлический защитный колпачок, оснащенный вентиляционными продухами, предназначен для защиты измерительного элемента от повреждений;
  • 6 — пружинная контактная часть;
  • 7 — чувствительный элемент, выполненный из керамики;
  • 8 — нагревательный стержень;
  • 9 — вентиляционный канал;
  • 10 — внешний металлический корпус.

Срок службы лямбда-зонда

Средняя продолжительность жизни кислородных датчиков на российском бензине 40 000–100 000 км. Для увеличения срока службы рекомендуется заливать качественное топливо с низким содержанием примесей и тяжелых металлов. Самодиагностикой определить неисправность достаточно сложно, установить причину — практически невозможно. Это может быть износ, низкое качество бензина, механическое повреждение и другие факторы.

Если у вас возникли подозрения в неисправности датчика кислорода, обратитесь к профессиональным диагностам. При помощи осциллограммы специалист определит причины неисправности и подскажет пути устранения. 

Как правильно проверять лямбда зонд мультиметром с видео

Как проверить работоспособность лямбда зонда Лямбда-зонд предназначен для анализа выхлопных газов автомобиля на количество кислорода и на современных автомобилях устанавливается вместе с так называемым катализатором. Избыток этого газа в топливовоздушной смеси не сулит вашей машине ничего хорошего, потому что работа катализатора напрямую зависит от кислорода. Как проверить лямбда-зонд на исправность мультиметром? Поговорим об этом далее.

Что такое лямбда-зонд

Это достаточно простое устройство анализа выхлопных газов, основанное на гальваническом эффекте. Располагается он обычно в выпускном коллекторе. На некоторых машинах, например, Ладе Калине, датчиков удельного количества кислорода устанавливается два. Замечено, что состояние устройства напрямую связано с расходом горючего.

Основываясь на показаниях датчика кислорода, система управления двигателем корректирует состав горючей смеси, если она беднеет. Наличие кислорода изменяет разность электрических потенциалов в выхлопных газах, и эти изменения улавливаются прибором.

Кислородные датчики с разных машин

Лямбда-зонд может работать только в определённом температурном диапазоне, поэтому в него встроен тепловой элемент, который включается в момент запуска мотора.

Схема датчика кислорода такова:

Датчик кислорода в разрезе

Признаки неисправности

На неисправность датчика кислорода указывают следующие признаки:

  • Сообщения бортового компьютера о чрезмерно богатой смеси, если на это нет причин.
  • Замедленная реакция датчика на изменение состава смеси.
  • Пропуски зажигания.
  • Неполадки в системе электропитания.
  • Внешние повреждения корпуса датчика.
  • Мотор неустойчиво себя ведёт на низких оборотах.
  • Ухудшается разгонная динамика автомобиля.
  • Греется катализатор.

Проверка датчика кислорода мультиметром

Диагностика лямбды заключается в контроле напряжения его сигнального выхода с помощью сканера или тестера. Меняя качество смеси, можно отследить изменение показаний кислородного датчика, которые в итоге выдадут диагноз об исправности или непригодности последнего. А вот ошибки, которые вам покажет ЭБУ, могут оказаться обманом. Что поделать, иногда и электроника ошибается.

Для проверки кислородного датчика мультиметром нужно, чтобы мотор был запущен и прогрет. Число оборотов коленчатого вала по показаниям тахометра не должно превышать 3000 в минуту. Далее один из щупов тестера соединяется с выходом зонда, а другой – с «массой» автомобиля и при работающем моторе начинается имитация изменения состава горючей смеси в цилиндрах. При исправном зонде показатели напряжения будут варьироваться от 0,2 до 0,9 вольт.

Мультиметр к лямбда-зонду подключается по этой схеме

Имитировать изменение топливовоздушной смеси можно, впрыснув небольшое количество бензина во впускной коллектор либо сняв шланг с регулятора давления топлива. При этом показания прибора должны резко увеличиться.

Как прозвонить и проверить зонд (видео)

Как проверить лямбда зондКак проверить лямбда зонд

Что делать при обнаружении поломки

При показаниях тестера 0,4-0,5 и отсутствии реакции на изменение положения педали акселератора следует заменить кислородный датчик. Если напряжение и вовсе отсутствует – проверьте визуально и прозвоните идущие к зонду провода.

Лямбда-зонд можно сравнить с первой скрипкой оркестра – его состояние серьёзно отражается на поведении двигателя и машины в целом. Деталь эта весьма капризная, а в силу применения не совсем качественного горючего не замедлит себя ждать с поломкой, одним из неприятных последствий которой станет резкое увеличение токсичности отработанных газов.

Как понять, что лямбда-зонд вышел из строя и заменить его: советы автолюбителей

1. Если лямбда-зонд неисправен, заметны нарушения в работе двигателя.

«Основная функция лямбда-зонда заключается в определении окиси углерода в выхлопных газах того или иного транспортного средства. С учетом данных, получаемых от датчика кислорода, регулируется подача топлива в цилиндры. Когда лямбда-зонд неисправен, нарушения в работе двигателя очевидны: слишком большой расход топлива, специфический запах после глушения и т. д. Менять на резистор бессмысленно, поскольку компьютер воспринимает постоянное сопротивление резистора за неисправность».

2. Основной признак поломки лямбда-зонда – набор скорости.

«При неисправности лямбда-зонда обнаружил несколько характерных моментов (повышенные обороты, большой расход бензина и т. д.). Но самым явным признаком для меня стал набор скорости: авто сперва разгоняется, потом затыкается, и так снова и снова. Такое ощущение, что газ сбрасываешь, а потом опять выжимаешь. После замены датчика все описанные проблемы, в том числе и с набором скорости, исчезли».

3. Замена лямбда-зонда должна быть обоснованной.

«Хочется сказать о том, что вероятность деформации проводов намного выше вероятности поломки самого датчика. При первых подозрениях в поломке лямбда-зонда следует разъединить разъем, внимательно его осмотреть, а также обследовать провода на предмет их целостности. В местах входа в разъем провода часто пережимаются и теряют свою функциональность. После этого необходимо проверить работу датчика, а именно: измерить напряжение в различных режимах работы двигателя».

4. При замене лямбда-зонда нужно учитывать один очень важный нюанс.

«Процесс замены датчика нельзя назвать сложным, но он требует определенной подготовки. Самая важная часть предшествующего работе процесса – подготовка специального ключа на 22 с прорезью, который понадобится, чтобы снять датчик.

Без такого приспособления лямбда-зонд может не поддаться. Стандартный рожковый ключ, как правило, не позволяет захватить основание датчика из-за наличия возле него отливов на выпускном коллекторе. При отсутствии отливов ключом можно повредить грани у гайки датчика, ведь она сильно прикипает к выпускному коллектору и изготовлена из довольно мягкого металла.

Столкнувшись с данной проблемой, я узнал, что оригинальный ключ для автомобиля «Хонда» стоит больше 70 евро, потому решил изготовить приспособление для снятия лямбда-зонда самостоятельно.

Расскажу, как. Во-первых, взял накидной ключ на 22 и приварил к нему гайку на 30. После этого на ключе и приваренной к нему гайке сделал сквозную прорезь на одном боку. Она нужна для того, чтобы заводить внутрь ключа и гайки провода лямбды, ведь разъем на концах проводов датчика кислорода не проходит через накидной ключ на 22.

Итак, разъем лямбда-зонда нужно продеть через дополнительный накидной ключ на 30, который уже прикреплен к гайке на 30, приваренной к ключу на 22. Этими двумя ключами можно отвернуть даже наглухо закрепленную лямбду. Получается просто, экономно и эффективно».

5. Лямбда-зонд можно заменить своими руками.

«У меня получилось заменить лямбда-зонд на своем автомобиле самостоятельно.

Оригинальной устройство было однопроводным, и на замену я также купил однопроводной лямбда-зонд фирмы Bosh.

Опишу алгоритм замены:

  • Нагреваем двигатель (так будет легче открутить винты крепления крышки выпускного коллектора и сам датчик).
  • Отключаем «минус» аккумулятора.
  • Разъединяем разъем подключения лямбды.
  • Анализируем ситуацию: смотрим, можно ли выкрутить лямбда-зонд и есть ли подходящий для этих целей инструмент (о том, как изготовить приспособление для снятия лямбды читайте чуть выше).
  • Выкручиваем датчик. Пробуем установить замену, проверяем, подходит ли резьба, смотрим на глубину вкручивания.
  • На расстоянии 15 см от корпуса лямбда-зонда отрезаем провода. Действия, описанные в этом пункте и в следующем актуальны для случаев, если вы имеете дело с неоригинальным датчиком.
  • Соединяем провод нового датчика с проводом от старого лямбда-зонда. В стандартную комплектацию к устройству обычно входит соединительная трубка размером 2-3 см. Провод нового датчика вставляем в термотрубку, которая также входит в комплект.

Зачищаем провода (не более 1 см) и вставляем в трубку с двух сторон. Затем сжимаем трубку максимальным усилием и проверяем надежность соединения. В конце термотрубку следует завести на место соединения и прогреть эту область при помощи зажигалки (не забывайте вращать соединение в процессе нагрева).

  • Закручиваем новый датчик, присоединяем разъем.
  • Устанавливаем защитную крышку коллектора.
  • Подключаем «минус» аккумулятора, включаем двигатель, а затем проверяем его работу».

Признаки, причины и устранение неисправностей лямбда зонда при проверке осмотром его состояния:

  1. Защитный кожух лямбда зонда сильно закопчен сажей
    Причина:
    Двигатель работает на слишком богатой смесиУстранение: Необходимо заменить зонд и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное загрязнение зонда.
  2. Блестящие депозиты на защитной трубе
    Причина:
    Использование этилированного топливаУстранение: Свинец разрушает элемент зонда. Необходимо заменить датчик и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным топливом. Выясните какие АЗС на пути регулярных поездок продают качественное топливо.
  3. Налет белого или серого цвета на датчике кислородаПричина: Двигатель сжигает масло, дополнительные присадки в топливе.Устранение: Необходимо заменить зонд и устранить причину сгорания масла.
  4. Неправильная установка лямбда зонда
    Причина:
    Недостаточно опыта, не читал инструкцию, кривые руки. Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.
    Устранение:
    Заменить лямбда датчик на новый или рабочий.

6. Проверка функции нагрева лямбда зонда. Устранение неисправности.

Для проверки нагревательного элемента питания лямбда зонда можно проверить внутреннее сопротивление и напряжение питания.

Для этого отсоедините разъем от лямбда-датчика. Со стороны лямбда-датчика используйте омметр для измерения сопротивления на обоих проводах нагревательного элемента. Сопротивление должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Напряжение должно быть больше 10,5 V (бортовое напряжение).

При обнаружении обрыва цепи устраните неисправность. Ниже приведена таблица назначения проводов и цвета проводов датчиков лямбда в зависимости от типа.

Двоичные и широкополосные зонды

Лямбда-датчики можно разделить на две группы. Более современный вариант известен как так называемый широкополосный зонд.

Двоичные датчики.

Двоичные лямбда-зонды, сигнализируют о скачках между двумя значениями.

Датчики кислородные.

Существует два различных типа датчиков: датчики кислорода на основе диоксид циркония и на диоксиде титана. Оба типа имеют форму пальца и полые внутри. С зондами из диоксида циркония наружная часть зонда находится в потоке выхлопных газов, внутренняя часть находится в контакте с окружающим воздухом (эталонный газ). Между ними находится твердый электролит на основе диоксида циркония, способный проводить ионы кислорода от 300 градусов. Ионы кислорода затем мигрируют из наружного воздуха через диоксид циркония к выхлопному газу, чтобы компенсировать различные концентрации кислорода между наружным воздухом и выхлопным газом. На платиновых электродах, окружающих диоксид циркония, генерируется электрическое напряжение — выходной сигнал, который передается на блок управления. Если смесь бедна (высокое содержание кислорода в выхлопных газах, низкий поток ионов кислорода к выхлопным газам), присутствует напряжение менее 0,2 вольт. Если смесь обогащена (высокое содержание топлива в выхлопных газах, высокий поток ионов кислорода к выхлопным газам), напряжение превышает 0,8 вольт. В диапазоне идеального значения лямбды, равного единице, напряжение между ними составляет около 0,45 вольт.

Это также относится к датчику на основе диоксида титана. Но здесь есть два основных различия по сравнению с зондом из диоксида циркония: твердый электролит состоит, как следует из названия, из диоксида титана. Для этого электрическое сопротивление изменяется пропорционально содержанию кислорода в выхлопных газах. Проводимость внезапно падает внутри лямбда-окна с λ = 0,98 (жирный шрифт) и λ = 1,02 (наклонный). Таким образом, информация о рабочем состоянии двигателя обеспечивается соответствующим измеренным сопротивлением. В отличие от зонда диоксида циркония, сам зонд диоксида титана не генерирует никакого напряжения. И нет необходимости в окружающем воздухе как эталонного газа для определения содержания кислорода в выхлопных газах. Это делает зонд из диоксида титана более компактным. Однако датчик должен быть нагрет для быстрого достижения рабочей температуры 700 градусов. Сегодня этот тип зонда больше не используется в серийном производстве.

Широкополосные

Широкополосные зонды определяют состав смеси гораздо более дифференцированным образом, чем прыгающие зонды. Это означает, что они отвечают требованиям современных бензиновых и дизельных двигателей, которые требуют точного контроля соотношения воздух / топливо даже за пределами лямбда-окна. Прямые бензиновые инжекторы преднамеренно работают на обедненной основе (λ> 1), чтобы снизить потребление в диапазоне частичной нагрузки. А в случае дизелей регулярный процесс требует богатой смеси (λ <1). Широкополосные датчики могут определять значения лямбда от 0,6 (очень богатые), диапазон измерения расширяется до бесконечности.

Конструкция такого зонда более сложна. Он состоит из двух ячеек, измерительной ячейки и ячейки насоса. Содержание кислорода в отработавших газах определяется в измерительной ячейке. Если это значение отклоняется от своего эталонного, ионы кислорода закачиваются в измерительную ячейку через ячейку насоса. Ток накачки, необходимый для этого, является переменной измерения, которая определяет точное значение лямбда смеси.

Как работает датчик кислорода

Главной функцией лямбда-зонда считается измерение количество кислорода, содержащегося в выхлопных газах, и сравнение его с эталонным.

Электрические импульсы от кислородного датчика поступают в электронный блок управления (ЭБУ) топливной системой. Относительно этих данных ЭБУ регулирует состав ТВС, подаваемой в цилиндры.

Схема установки основного и дополнительного датчиков кислорода в автомобиле

Результатом совместной работы лямбда-зонда и ЭБУ является получение стехиометрической (теоретически идеальной, оптимальной) ТВС, состоящей из 14,7 частей воздуха и 1 части топлива, при которой λ=1. У обогащенной смеси (избыток бензина) λ<1, у обеднённой (избыток воздуха) — λ>1.

График зависимости мощности (P) и расхода топлива (Q) от величины (λ)

Назначение и принцип работы

Лямбда зонд – это устройство, предназначенное для контроля состава выхлопных газов. С помощью него определяется объем кислорода, оставшийся после сгорания топлива, а полученные данные по сигнальным проводам передаются на ЭБУ автомобиля. Для чего это нужно?

Дело в том, что работа систем выпуска отработанных газов и топливной тесно взаимосвязаны.

Связующим звеном в этой цепи является электронный блок управления, который не только получает данные от датчика кислорода в виде электрических импульсов, но и передает на его сигнальный вывод опорное напряжение 0.45 вольт (это важно). ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д

Корректировка происходит за счет изменения времени открытия топливных форсунок

ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д. Корректировка происходит за счет изменения времени открытия топливных форсунок.

Правильное соотношение топлива и воздуха для определенных условий работы двигателя, при которых горючая смесь сгорает полностью, называется стехиометрической топливовоздушной смесью.

Также существует такое понятие как коэффициент избытка воздуха или уровень лямбда.

В идеальных условиях, когда все пропорции топлива и воздуха соблюдены правильно (14,7 частей воздуха и 1 часть топлива) этот коэффициент равен 1.

Если смесь обедненная (15:1 и выше), то уровень лямбда будет больше 1, если обогащенная (ниже 14:1), меньше.

Представим, что лямбда зонд неисправен и передает ошибочные данные на ЭБУ. В результате для разных режимов работы двигателя будет формироваться неправильная топливовоздушная смесь, а это минимум большой расход топлива и потеря мощности.

Дальше идет экологическая составляющая, без которой на современных автомобилях никуда, речь идет про каталитический нейтрализатор.

При сгорании топлива образуется ряд токсических компонентов, увеличенное количество которых в выхлопных газах негативно влияет на эффективность работы катализатора.

К основным токсическим веществам можно отнести:

  1. Несгоревшие углеводороды — CH;
  2. Угарный газ и окись кислорода — CO;
  3. Окись азота – Noх.

Ошибки в работе лямбда зонда, и как следствие, неправильное сгорание топлива, приводит к увеличению содержания вредных веществ в выхлопных газах, а с таким количеством катализатор уже не в состоянии справиться.

Существует такое понятие, как «медленный датчик», это когда время его срабатывания превышает 120 мСек и по этой причине ЭБУ не успевает подготовить правильную топливную смесь, отсюда и повышенная токсичность отработанных газов. Но об этом ниже.

Получается, что лямбда зонд является важным устройством, от работы которого зависит насколько правильно будет формироваться стехиометрический состав топливовоздушной смеси при тех или иных режимах работы силового агрегата.

Когда он исправен погрешность в формировании стехиометрического состава равна ±1% и это очень важно, а когда нет, эта цифра увеличивается

Методы диагностики

Диагностику датчиков желательно проводить каждые 10000 км пробега автомобиля либо при первых признаках неисправности зонда, которые описаны ниже.

Мультиметром

Очень часто причиной нерабочего состояния кислородного зонда является повреждение спирали нагревателя либо контакта с нагревателем. Так ли это, легко проверить мультиметром, переключив его в режим работы омметра. Обычно 3 и 4 контакт (в 4-х проводном датчике) подходят к нагревательному элементу. Значение сопротивления должно быть в пределах 4,5 – 5,5 Ом. Если показания превышают данное значение, то зонд требует замены, так как нагревательный элемент вышел из строя.

Для проверки сигнала, поступающего на электронный блок, нужно завести автомобиль, нажать на педаль газа, чтобы подержать двигатель в высокооборотном режиме в течение некоторого времени. Сигнальный провод зонда (обычно черный) подключаем к плюсовому щупу мультиметра, а минусовой щуп, соединяем с «землей», переключаем прибор в режим вольтметра (2000 мВ). При удержании педали газа и резком отпускании, показания прибора должны быть в пределах от 1000 мВ до 100 мВ. Если показания остаются неизменными в пределах 400 – 500 мВ при манипуляции с педалью газа, то зонд неисправен.

Осциллографом

Качество проверки осциллографом проявляется в возможности узнать временной промежуток изменения сигнала выходного напряжения. Для проверки необходимо подсоединить осциллограф к проводу, дающему сигнал на электронный блок (черному). Далее нужно завести двигатель и подождать прогрева до 70˚С. По мере прогрева датчика до 400˚С, прибор начнет показывать волнообразный график. При работе двигателя на оборотах около 3000, прибор должен показывать ровный волнообразный график с нижним пределом уровня сигнала (не менее 0,1 В) и высоким (не более 0,8 — 1 В).

Если на экране прочерчивается график в крайних (верхней или нижней) точках, а также в положении около 0,6 В при максимальной работе двигателя, то λ – зонд неисправен.

Как сделать корректор (обманку) лямбда-зонд?

Есть несколько видов корректоров для кислородных контроллеров. Механическое устройство является наиболее простым и доступным в плане исполнения корректоров. Надо выточить специальный переходник, в который устанавливается лямбда-зонд, а также мини-катализатор. После этого собранное устройство монтируется в штатное место глушителя машины.

Если сломается катализаторное устройство либо кислородный датчик, установленные после него, на блок управления поступит сигнал. Модуль будет предупрежден о том, что в выхлопных газах содержатся вредные вещества, объем которых превышает допустимую величину. Управляющий блок воспримет это событие как аварийное и повысит подачу горючего для обогащения топливовоздушной смеси.

При монтаже такого корректора отработанные газы будут поступать через небольшое отверстие переходника в катализаторное устройство. Последнее наполнено керамической пылью с каталитическим слоем. Концентрация вредоносных веществ в отработанных газах будет меньше. Управляющий модуль воспримет это как правильную работу контроллера и штатного катализаторного устройства. Изготовление обманки выполняется с помощью токарного станка и схемы, в качестве материала допускается применение стали либо бронзы.

Схема механического корректора для лямбда-зонда

Универсальные чертежи, которые можно найти в сети, могут не подойти для изготовления обманки лямбда-зонда к конкретной модели авто, надо искать проверенный вариант.

Изготовление электронной обманки контроллера:

  1. С помощью программы СпринтЛейаут и принтера выполняется распечатка чертежа разводки и расположения элементов схемы. Печать выполняется на глянцевой бумаге.
  2. При отправке файла на печать для слоя К1 надо выбрать черный цвет на 100%. В программе установите галочку напротив пунктов Зеркально и Контур схемы. Все другие слои удаляются.
  3. Затем отправляется на печать следующий слой. Для слоя М2 указывается черный цвет. Галочка напротив пункта Зеркально убирается, но она оставляется напротив второго элемента. Другие слои убираются.
  4. При выполнении задачи рекомендуется использоваться фольгированный текстолит. Он должен быть односторонним, а его толщина составит не менее 1 и не более 2 мм.
  5. Когда распечатка будет на руках, ее надо перенести на плату LM324 с помощью утюга. Сама плата вырезается с учетом размеров, а по ее контуру надо сделать распечатки. После вырезания приложите схему к чертежу, размеры должны полностью совпадать.
  6. С использованием мелкозернистой наждачной бумаги выполняется зачистка медного слоя. С помощью топлива или растворителя делается очистка платы.
  7. Затем на рабочую поверхность платы надо перенести распечатку с дорожками. На обратную (медную поверхность) устанавливается распечатанный слой элементов. Для этого фольгированная бумага прикладывается к плате и прогревается утюгом, процедура занимает не более 10 минут. При прогреве поверхность утюга надо максимально прижать к плате. В итоге тонер должен перепечататься с фольгированной поверхности на схему. Если плотность бумаги невысокая, то дорожки будут просвечиваться. Проблему можно исправить с помощью перманентного черного маркера.
  8. Следующим этапом будет вытравливание, для этого потребуется хлорное железо либо перхлорат натрия.
  9. Затем на плате высверливаются отверстия, выполняется припайка элементов.
  10. На завершающем этапе делается регулировка рабочих параметров корректора. Для этого на вход подается +950 мВ, выполняется регулировка величины напряжения в диапазоне от 950 до 1000 мВ. Для платы LM324 процедура делается посредством настройки элементов VR3 и VR4.

Схема для изготовления электронной обманки

Распечатка схемы для установки на плату

Соединение всех компонентов на плате обманки

Подводим итоги

Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.

Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий