Способы расчета скорости воздуха в воздуховодах

Алгоритм выполнения расчетов

При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.

При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.

Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.

Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.

Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.

Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями

Чаще всего используется следующий алгоритм проведения вычислений:

  1. Составление аксонометрической схемы, в которой перечисляются все элементы.
  2. На базе этой схемы рассчитывается длина каждого канала.
  3. Измеряется расход воздуха.
  4. Определяется скорость потока и давление на каждом участке системы.
  5. Выполняется расчет потерь на трение.
  6. С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.

При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.

Вычисление площади сечения и диаметра

Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.

Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.

Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.

Для вычислений используется следующая формула:

S = L/3600*V,

при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);

Используя следующую формулу, можно посчитать диаметр воздуховода (D):

D = 1000*√(4*S/π), где

S – площадь сечения (м²);

π – 3,14.

Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.

Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения

При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.

Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.

Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.

Расчет потери давления на сопротивление

По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).

Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети

Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.

Применяется эта формула:

P=R*L+Ei*V2*Y/2, где

R – удельная потеря давления на трение на определенном участке воздуховода;

L – длина участка (м);

Еi – суммарный коэффициент локальной потери;

V – скорость воздуха (м/с);

Y – плотность воздуха (кг/м3).

Значения R определяются по нормативам. Также этот показатель можно рассчитать.

Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:

R = (X*D/В) * (V*V*Y)/2g, где

X – коэфф. сопротивления трения;

L – длина (м);

D – диаметр (м);

V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);

g – 9,8 м/с².

Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.

Расчет воздуховодов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Полезные советы

Скорость перемещения воздуха увеличивается прямо пропорционально уменьшению размеров трубы. Рассмотрим некоторые положительные моменты, которые можно извлечь из этого правила:

  • в случае если размеры помещения, в котором будет прокладываться вентиляционный канал, не подходят под организацию больших коммуникаций или дополнительных ответвлений, то тогда идеально подойдут трубы меньших размеров;
  • вентиляция, которая отличается небольшими габаритами, является более компактной и её монтаж менее трудозатратен;
  • чем меньше показатель сечения воздуховода, тем ниже его цена. Это связано с тем, что на трубы маленьких размеров тратиться гораздо меньше материала.

Однако специалисты рекомендуют проводить соответствующие расчёты давления, которое будет оказываться на стенки небольшого канала. Показатели давления в таком случае гораздо выше, что объясняется повышенной скоростью воздуха.

Расчет естественной вентиляции (ответ на вопрос)Расчет естественной вентиляции (ответ на вопрос)

Расчёт системы вентиляции

Таблицы и формулы расчёта вентиляции.

Этот материал любезно предоставлен моим другом — Spirit’ом.

Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.

Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.

Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?

Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч

Источник

Рекомендованные нормы скорости воздухообмена

Во время составления проекта здания выполняют расчет каждого отдельного участка. На производстве это цеха, в жилых домах – квартиры, в частном доме – поэтажные блоки или отдельные комнаты.

Перед установкой системы вентиляции известно, каковы маршруты и размеры главных магистралей, какой геометрии необходимы вентиляционные каналы, какой размер труб является оптимальным.


Не стоит удивляться габаритным размерам воздуховодов в заведениях общественного питания или других учреждениях – они рассчитаны на вывод большого количества использованного воздуха

Расчеты, связанные с передвижением воздушных потоков внутри жилых и производственных зданий, относят к разряду наиболее сложных, поэтому заниматься ими обязаны опытные квалифицированные специалисты.

Рекомендованная скорость воздуха в воздуховодах обозначена в СНиП — нормативной государственной документации, и при проектировании или сдаче объектов ориентируются именно на нее.

В таблице указаны параметры, которых следует придерживаться при устройстве вентиляционной системы. Числами указана скорость перемещения воздушных масс по местам установки каналов и решеток в общепринятых единицах – м/с

Считается, что внутри помещений скорость воздуха не должна превышать показатель 0,3 м/с.

Исключения составляют временные технические обстоятельства (например, ремонтные работы, установка строительной техники и др.), во время которых параметры могу превышать нормативы максимум на 30 %.

В больших по объему помещениях (гаражах, производственных цехах, складах, ангарах) часто вместо одной вентиляционной системы действуют две.

Нагрузка делится пополам, следовательно, и скорость воздуха подбирают так, чтобы она обеспечивала по 50 % общего расчетного объема перемещения воздуха (удаления загрязненного или подачи чистого).

При возникновении форс-мажорных обстоятельств возникает необходимость в резкой смене скорости воздуха или полной приостановке работы вентиляционной системы.

Например, по требованиям пожарной безопасности скорость движения воздуха снижают до минимума в целях предотвращения распространения по соседним помещениям огня и дыма во время возгорания.

С этой целью в воздуховодах и на переходных участках монтируют отсекатели и клапаны.

Некоторые экономические аспекты подбора размеров воздухопровода

При расчете размеров и скорости воздуха в воздуховоде наблюдается такая зависимость: при увеличении последней диаметры каналов уменьшаются. Это дает свои преимущества:

  1. Проложить трубопроводы меньших размеров гораздо проще, особенно если их нужно подвешивать на большой высоте или если условия монтажа весьма стесненные.
  2. Стоимость каналов меньшего диаметра соответственно тоже меньше.
  3. В больших и сложных системах, которые расходятся по всему зданию, прямо в каналы необходимо монтировать дополнительное оборудование (дроссельные заслонки, обратные и противопожарные клапаны). Размеры и диаметры этого оборудования также уменьшатся, и снизится их стоимость.
  4. Прохождение перекрытий трубопроводами в производственном здании может стать настоящей проблемой, если его диаметр большой. Меньшие размеры позволят пройти так, как нужно.

Главный недостаток такого выбора заключается в большой мощности вентиляционного агрегата. Высокая скорость воздуха в малом объеме создает большое динамическое давление, сопротивление системы растет, и для ее работы требуется вентилятор высокого давления с мощным электродвигателем, что вызывает повышенный расход электрической энергии и, соответственно, высокие эксплуатационные затраты.

Другой путь – это снижение скорости воздушных потоков в воздуховодах. Тогда параметры вентиляционного агрегата становятся экономически приемлемыми, но возникает множество трудностей в монтаже и высокая стоимость материалов.

Проблемы прохождения большой трубой перегруженных оборудованием и инженерными сетями мест решается множеством поворотов и переходов на другие виды сечений (с круглого на прямоугольное или плоскоовальное). Проблему стоимости приходится решать единоразово.

Во времена СССР проектировщики, как правило, старались найти компромисс между этими двумя решениями. В настоящее время удорожания энергоносителей появилась тенденция к применению второго варианта. Собственники предпочитают единоразово решить финансовые вопросы и смонтировать более экономичную вентиляцию, чем потом в течение многих лет оплачивать высокие затраты электроэнергии. Применяется и универсальный вариант, при котором в магистральных воздухопроводах с большими расходами скорость потока увеличивают до 12-15 м/с, чтобы уменьшить их диаметры. Дальше по системе соблюдается скорость 5-6 м/с на ответвлениях, вследствие чего потери давления выравниваются. Вывод здесь однозначный: скорость движения воздушного потока в каналах играет немаловажную роль для экономики предприятия.

Расчет скорости воздуха в воздуховоде по сечению: таблицы, формулы

При расчете и установке вентиляции большое внимание уделяется количеству свежего воздуха, поступающего по этим каналам. Для вычислений используются стандартные формулы, которые хорошо отражают зависимость между габаритами вытяжных устройств, скоростью движения и расходом воздуха

Некоторые нормы прописаны в СНиПах, но в большинстве своем имеют рекомендательный характер.

Общие принципы расчета

Воздуховоды могут быть изготовлены из различных материалов (пластик, металл) и иметь разные формы (круглые, прямоугольные). СНиП регулирует только габариты вытяжных устройств, но не нормирует количество притяжного воздуха, т. к. его потребление в зависимости от типа и назначения помещения может сильно различаться. Этот параметр высчитывается по специальным формулам, которые подбираются отдельно.

Нормы установлены только для социальных объектов: больниц, школ, дошкольных учреждений. Они прописаны в СНиПах для таких зданий. При этом отсутствуют четкие правила по скорости движения воздуха в воздуховоде. Есть только рекомендуемые значения и нормы для принудительной и естественной вентиляции в зависимости от ее типа и назначения, их можно посмотреть в соответствующих СНиПах. Это отражено в таблице, приведенной ниже.

Скорость движения воздуха измеряется в м/с.

Рекомендуемые скорости воздуха

Дополнить данные в таблице можно следующим образом: при естественной вентиляции скорость движения воздуха не может превышать 2 м/с независимо от ее назначения, минимальная допустимая – 0,2 м/с. В противном случае обновление газовой смеси в помещении будет недостаточным. При принудительной вытяжке максимально допустимым считается значение 8 -11 м/с для магистральных воздуховодов. Превышать данные нормы не следует, т. к. это создаст слишком большое давление и сопротивление в системе.

Формулы для расчета

Для проведения всех необходимых вычислений необходимо обладать некоторыми данными. Чтобы вычислить скорость воздуха, понадобится следующая формула:

ϑ= L / 3600*F, где

ϑ – скорость потока воздуха в трубопроводе вентиляционного устройства, измеряется в м/с;

L – расход воздушных масс (данная величина измеряется в м3/ч) на том участке вытяжной шахты, для которого производится вычисление;

F – площадь поперечного сечения трубопровода, измеряется в м2.

По данной формуле и производится расчет скорости воздуха в воздуховоде, причем его фактическое значение.

Из этой же формулы можно вывести и все остальные недостающие данные. Например, чтобы рассчитать расход воздуха, формулу необходимо преобразовать следующим образом:

L = 3600 x F x ϑ.

В некоторых случаях подобные вычисления производить сложно или не хватает времени. В этом случае можно использовать специальный калькулятор. Встречается множество подобных программ в интернете. Для инженерных бюро лучше установить специальные калькуляторы, которые обладают большей точностью (вычитают толщину стенки трубы при расчете ее площади поперечного сечения, ставят большее количество знаков в число пи, высчитывают более точный расход воздуха и т. д.).

Знать скорость движения воздуха необходимо для того, чтобы вычислить не только объем подачи газовой смеси, но и для определения динамического давления на стенки каналов, потерь на трение и сопротивление и т.д.

Несколько полезных советов и замечаний

Как можно понять из формулы (или при проведении практических расчетов на калькуляторах), скорость воздуха увеличивается при уменьшении размеров трубы. Их этого факта можно извлечь ряд преимуществ:

  • не возникнет потерь или необходимости в прокладке дополнительного вентиляционного трубопровода для обеспечения необходимого расхода воздуха, если габариты помещения не позволяют провести каналы больших размеров;
  • можно прокладывать трубопроводы меньших размеров, что в большинстве случаев проще и удобней;
  • чем меньше диаметр канала, тем дешевле его стоимость, снизится цена и на доборные элементы (заслонки, клапаны);
  • меньший размер труб расширяет возможности монтажа, их можно расположить так, как нужно, практически не подстраиваясь под внешние стесняющие факторы.

Однако при прокладке воздуховодов меньшего диаметра необходимо помнить, что при повышении скорости воздуха повышается динамическое давление на стенки труб, увеличивается и сопротивление системы, соответственно потребуется более мощный вентилятор и дополнительные расходы. Поэтому до монтажа необходимо тщательно провести все расчеты, чтобы экономия не обернулась большими затратами или даже убытками, т.к. постройку, не соответствующую нормам СНиП могут не допустить до эксплуатации.

Формулы для расчета

Для проведения всех необходимых вычислений необходимо обладать некоторыми данными. Чтобы вычислить скорость воздуха, понадобится следующая формула:

ϑ= L / 3600*F
, где

ϑ
– скорость потока воздуха в трубопроводе вентиляционного устройства, измеряется в м/с;

L
– расход воздушных масс (данная величина измеряется в м 3 /ч) на том участке вытяжной шахты, для которого производится вычисление;

F
– площадь поперечного сечения трубопровода, измеряется в м 2 .

По данной формуле и производится расчет скорости воздуха в воздуховоде, причем его фактическое значение.

Из этой же формулы можно вывести и все остальные недостающие данные. Например, чтобы рассчитать расход воздуха, формулу необходимо преобразовать следующим образом:

L = 3600 x F x ϑ
.

В некоторых случаях подобные вычисления производить сложно или не хватает времени. В этом случае можно использовать специальный калькулятор. Встречается множество подобных программ в интернете. Для инженерных бюро лучше установить специальные калькуляторы, которые обладают большей точностью (вычитают толщину стенки трубы при расчете ее площади поперечного сечения, ставят большее количество знаков в число пи, высчитывают более точный расход воздуха и т. д.).

Как можно понять из формулы (или при проведении практических расчетов на калькуляторах), скорость воздуха увеличивается при уменьшении размеров трубы. Их этого факта можно извлечь ряд преимуществ:

  • не возникнет потерь или необходимости в прокладке дополнительного вентиляционного трубопровода для обеспечения необходимого расхода воздуха, если габариты помещения не позволяют провести каналы больших размеров;
  • можно прокладывать трубопроводы меньших размеров, что в большинстве случаев проще и удобней;
  • чем меньше диаметр канала, тем дешевле его стоимость, снизится цена и на доборные элементы (заслонки, клапаны);
  • меньший размер труб расширяет возможности монтажа, их можно расположить так, как нужно, практически не подстраиваясь под внешние стесняющие факторы.

Однако при прокладке воздуховодов меньшего диаметра необходимо помнить, что при повышении скорости воздуха повышается динамическое давление на стенки труб, увеличивается и сопротивление системы, соответственно потребуется более мощный вентилятор и дополнительные расходы. Поэтому до монтажа необходимо тщательно провести все расчеты, чтобы экономия не обернулась большими затратами или даже убытками, т.к. постройку, не соответствующую нормам СНиП могут не допустить до эксплуатации.

Любая вентиляционная сеть состоит из каналов, оборудования и фасонных элементов. Для создания необходимого воздухообмена, важным параметром является не только производительность приточно-вытяжных установок и конфигурация сети, но и аэродинамический расчет воздуховодов.

6 Некоторые нюансы

При правильном проектировании здания и системы воздухообмена, а также точном вычислении скорости и кратности изменения воздушных масс в помещении возможно обеспечить и поддерживать оптимальный микроклимат в производственном, лечебном или жилом помещениях. Обращение к специалисту будет оптимальным вариантом и результаты, полученные путем расчетов, облегчат работу:

  • Нет необходимости в прокладывании дополнительных вентиляционных труб с целью обеспечения необходимого расхода воздуха. Особенно актуально это в случае, когда размеры помещения не позволяют прокладывать массивную систему.
  • Существует возможность уже на этапе проектирования и составления схемы вентиляции выбирать трубы меньшего диаметра. Это позволит не загромождать помещение, но обеспечит хороший воздухообмен. В небольших квартирах, где высота потолков не превышает 250 см, такое решение очень практично и незаменимо.
  • Меньший диаметр канала значительно экономит средства владельца помещения, поскольку стоит дешевле. Экономить можно и на комплектующих, например, заслонках и клапанах.
  • Возможности монтажа при использовании труб меньшего диаметра расширяются и нет необходимости жертвовать интерьером, чтобы установить качественную вентиляцию. Да и крепить небольшие и легкие трубы гораздо проще.

Однако стоит отметить, что в большом доме прокладка труб небольшого диаметра должна сочетаться с установкой достаточно мощного вентилятора. Обычно при такой системе естественная вентиляция будет работать хуже и требуется именно принудительная. Предварительно рекомендуется рассчитать размеры и скорость воздуха, поскольку здание, в котором вентиляционный трубопровод не будет соответствовать нормам СНиП, могут не допустить к эксплуатации. При условии соблюдения всех правил поддержание здорового микроклимата в любом помещении не составит труда.

Скорость воздушных масс в воздуховодах считается одним из основных параметров при монтировании вентиляции в жилом или производственном здании. С помощью точных расчётов можно обеспечить эффективный воздухообмен и избежать многих неприятностей. Если владелец не имеет соответствующих знаний для вычисления показателей, лучше доверить это профессионалу.

Как громко работает бризер Тион О2? Звуковой тест шума и скорости подачи воздухаКак громко работает бризер Тион О2? Звуковой тест шума и скорости подачи воздуха

Рекомендуемые места установки вентиляторов

В проектировании тихих систем вентиляции кроме подбора устройств с удовлетворительными шумовыми характеристиками нужно подбирать выгодные места их установки.

Проектирование систем вентиляции Ответы на вопросы Ч1Проектирование систем вентиляции Ответы на вопросы Ч1

В разрабатываемом здании вентиляторы располагают в специально отведенных звукоизолированных помещениях – в вентиляционных камерах. Камеры ставят обособленно от помещений с повышенными требованиями к тишине и комфортному уровню шума. Их оборудуют вдали от шахт лифтов, лестничных переходов, дверных и оконных проемов.

Выводы воздуховодов в открытое пространство предполагается направить так, чтобы шум не направлялся в сторону жилых построек и мест отдыха. Корректное направление звука от работы вентиляции эффективно помогает в минимизации шумовых помех вентиляционных комплексов объектов.

Правильно разместив в пространстве и направив выходное отверстие вентиляции, вы добьетесь снижения шума до разрешенных пределов без дополнительных затрат.

4 Определение скорости воздуха

Зная кратность воздушных масс, нетрудно рассчитать скорость воздуха в воздуховоде при естественной вентиляции. Сначала потребуется узнать площадь сечения воздуховодов. Для этого квадрат радиуса сечения воздуховода нужно умножить на число «пи».

Воздуховоды должны иметь определённый размер и форму. Определив сечение воздушного канала, можно рассчитать, воздуховод какого диаметра потребуется для конкретного помещения. В этом поможет выражение D = 1000*√(4*S/π). В нём:

  • D — диаметр сечения воздуховода.
  • S — площадь сечения воздушных каналов.
  • π — математическая константа, равная 3,14.

В соответствии со стандартами, минимальный размер прямоугольного канала составляет 100 мм х 150 мм, максимальный — 2000 мм х 2000 мм. Такие конструкции имеют более эргономичную форму, их проще установить плотно к стене и замаскировать трубы на потолке или над кухонными антресолями.

Вентиляция в доме. Турбодефлектор или дефлектор ЦАГИ ? Сравнение. Воздуховоды для вентиляции крышиВентиляция в доме. Турбодефлектор или дефлектор ЦАГИ ? Сравнение. Воздуховоды для вентиляции крыши

Круглые изделия отличаются от прямоугольных тем, что в них создаётся меньшее сопротивление воздуха. Поэтому они имеют минимальный уровень шума.

Используя формулу V = L/3600*S и такие параметры, как расход воздуха (L) и площадь каналов, можно провести расчёт естественной вентиляции. Пример расчёта будет таким:

  • D = 400 мм.
  • W = 20 м³.
  • N = 6 м3/ч.
  • L = 120 м³.

Установлено, что этот показатель не должен превышать 0,3 м/с. Исключение делается только на период временных ремонтных работ либо установки строительной техники. В это время нормативы могут повышаться максимум на 30%.

Если в помещении функционируют две вентиляционные системы, то скорость каждой из них рассчитывают таким образом, чтобы её было достаточно для обеспечения чистым воздухом половины площади.

В случае возникновения непредвиденных ситуаций (например, по требованию пожарной безопасности) приходится резко менять скорость воздуха или останавливать работу вентиляционной системы. Для этого в каналах и на переходных участках устанавливают специальные клапаны и отсекатели.

Заключение

Бани на колесах выглядят идеальным решением в ситуации, когда жить приходится в движении, регулярно перемещаться и работать в полевых условиях. Мобильная автобаня необходима дачникам, промысловикам, фермерам и строительным бригадам, работающим вдали от цивилизации. В подобной ситуации реальной альтернативы передвижной бане не существует.

Передвижная баняПередвижная баня

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий