Тензометрические датчики: описание, инструкция по применению, характеристики и отзывы

Как настроить балансировочную коробку весов с 4 тензодатчиками

Здравствуйте! Прошу подсказать мне алгоритм настройки балансировочной коробки для платформенных весов с 4 тензодатчиками.

По идее балансировочная коробка нужна чтобы уровнять разброс показаний тензодатчиков а так же скомпенсировать возможные недостатки весовой платформы. К этой коробке подключаются все датчики (обычно 4) затем с помощью подстроечных резисторов расположенных в этой же коробке происходит настройка. Сама коробка подключается к весовому терминалу.

Но вот проблема, похоже что подстроечные резисторы в этой коробке подключены параллельно? или как-то шунтируют датчики, да ещё в схеме присутствуют темрорезисторы. И получается так что подкручивая один резистор вы влияете не только на полключенный к нему тензодатчик но и на все остальные только в меньшей степени. Причем иногда эти изменения совершенно не предсказуемые.

Возникает вопрос а как же тогда быть?

1) судя по всему сделано так что каждый подстроесник шунтирует свой датчик но это немного влияет и на остальные датчики. фото:

(2,11Мб)

2) я может погорячился назвав их не предсказуемыми, но одни подстроечники влияют на другие нелинейно например я прошол и выставил их тестором по 15 ом но оказалось что последний стал 15 а остальные как то по возрастающей 16 17 типа того.

Я гдето видел но немогу найти алгоритм как с этим управиться там что то переставлять по углам и крутить подстроечники причем так несколько кругоа

Источник

Проволочные тензорезисторы

Нужно принять во внимание, как работает тензодатчик. На замеряемую деталь нужно установить отрезок тонкой проволоки

Посчитать нужное сопротивление можно по обычной формуле. Вместе с деталью крепится проволока для деформации. Чтобы сделать измерение усилия, сжатия и увеличения сечения, следует изменять геометрические размеры. При этом растяжение уменьшится. Сопротивление после этого поменяет знак, учитывая какое действие оказывается. Характеристика здесь остаётся линейной. Так как это датчик пониженной чувствительности, нужно добавить длину проволоки на одном из участков измерения.

Преимущества и недостатки тензодатчиков

Широкое применение тензодатчики получили благодаря своим свойствам:

  • возможности монолитного соединения датчика деформации с исследуемой деталью;
  • малой толщине измерительного элемента, что обеспечивает высокую точность измерения с погрешностью 1-3 %;
  • удобстве крепления, как на плоских, так и на криволинейных поверхностях;
  • возможности измерения динамических деформаций, меняющихся с частотой до 50000 Гц;
  • возможности проведения измерений в сложных условиях окружающей среды в температурном интервале от -240 до +1100˚С;
  • возможности измерений параметров одновременно во многих точках деталей;
  • возможности измерения деформации объектов, расположенных на больших расстояниях от тензометрических систем;
  • возможностью измерения деформаций в движущихся (крутящихся) деталях.

Из недостатков следует отметить:

  • влияние метеоусловий (температуры и влажности) на чувствительность датчиков;
  • незначительные изменения сопротивления измерительных элементов (около 1%) требует применение усилителей сигналов.
  • при работе тензодатчиков в условиях высокотемпературной или агрессивной среды необходимы специальные меры их защиты.

Сопротивление: особенности измерения

Описание

Тензодатчики классифицируются не только по своей форме, но и по конструктивным особенностям. Конструкция прибора зависит от типа чувствительного элемента. Для контроля деформации используются следующие типы контактов:

  1. Фольговые;
  2. Пленочные;
  3. Проволочные.

Индикатор с фольговым элементом используется как наклеиваемый тензодатчик. Это очень удобная система, которая представляет собой фольговую ленту, толщиной до 12 мкм. Часть пленки имеет плотную форму, а часть – решетчатую. Данная модель отличается от остальных тем, что можно припаивать дополнительные контакты, к тому же они нормально переносят низкие температуры.

Фото — фольговый преобразователь

Пленочные являются аналогом фольговых, за исключением материала, из которого изготовлены. Производители изготавливают такие модели из тензочувствительных пленок с особым напылением, которое увеличивает чувствительность системы. Такие измерительные узлы удобно использовать при необходимости измерить динамические нагрузки. Производство пленок выполняется из таких материалов, как титан, висмут, германий.

Проволочные способны измерить нагрузку от нескольких сотых грамма до целых тонн (скажем, весовой бункер и прочие). Их называют одноточечные, т. к в отличие от пленочных и фольговых моделей, они измеряют в одной точке, а не площади. Такая конструкция позволяет использовать проволочные тензодатчики для измерения деформации сжатия и растяжения.

Фото — проволочная модель

Датчики давления

Механические датчики давления состоят из:

  1. Жидкостных датчиков давления.
  2. Поршневых систем.
  3. Пружинных систем.

Теперь пришло время рассмотреть датчики движения, которые встречаются наиболее часто. Наиболее часто на сегодняшний день используют пружинные датчики давления. Их действие будет основано на том, что возникновении упругой деформации пружины, которая считается пружинным элементом прибора. При изменении давления будет возникать деформация внутри и снаружи. Изменение формы определенного элемента будет передаваться на подвижную часть прибора со стрелкой. При снятии давления элемент примет прежнюю форму.

В технических манометрах чаще всего применяются упругие пружины:

  • Одновитковые.
  • Многовитковые.
  • Плоские мембраны.
  • Сильфоны.

Раскручивание пружины будет происходить из-за того, что при увеличении внутреннего давления эллиптическое сечение будет стремиться принять круглую форму. В результате этого могут возникать напряжения, которые будут раскручивать пружину. Свободный конец будет перемещаться прямопропорционально давлению внутри ее. Таким образом, можно сказать о том, что измеряемое давление будет преобразовываться в механическое перемещение свободного конца пружины. Величина такого перемещения чаще всего будет составлять 5-7 мм.

Многовитковая трубчатая пружина будет иметь 6-9 витков. Перемещение свободного конца пружины значительно больше, чем у одновитковой пружины. Обычно датчики в виде одновитковой пружины могут применяться в показывающих приборах. В большинстве случаев это будет связано с тем, что в самопишущих приборах датчик должен иметь большое усилие, которого хватит для преодоления трения. В нашем разделе также есть статья о том, как работает тензодатчик.

Плоская гофрированная мембрана будет использоваться отдельно. При необходимости также можно применять плоскую прорезиненную ткань, которая будет плотно соединена с плоской калиброванной пружиной. Гармоникообразная мембрана отличается от других, так как имеет наибольшую чувствительность.

Сильфонные приборы предназначаются для измерения и записи избыточного давления в схемах автоматизации. Кроме этого, подобные устройства также можно использовать в качестве вторичных приборов к устройствам, которые имеют приспособление для пневматической передачи показаний на расстояние. Пружинные датчики давления в схемах позволяют преобразовывать механическое перемещение в электрический сигнал с помощью индуктивного или контактного датчика.

На рисунке выше представлена схема датчика давления типа МЭД. Здесь сначала давление будет восприниматься трубчатой манометрической пружиной. В дальнейшем оно будет преобразовываться в перемещение конца манометрической трубки. Это перемещение также может передаваться плунжеру трансформаторного датчика. Вторичным приборов в этой конструкции считается устройство типа ЭПИД.

Специалисты сообщают, что датчики расхода на сегодняшний день могут быть:

  1. Механические.
  2. Термические.
  3. Ионизационные.
  4. Индукционные.
  5. Акустические.

Датчики расхода будут действовать по принципу возникновения перепада давления в сужающем устройстве. Перепад давления в этом случае является функцией расхода. Сужающее устройство считается воспринимающим органом датчика расхода. Датчики расхода постоянного перепада (ротаметры) используются для регулирования сечения с целью поддерживания постоянным перепада давления. Если будет интересно, тогда можете прочесть про принцип работы термопары.

На рисунке, который расположен выше вам предоставлена схема ротаметра с индуктивным датчиком. Ротаметр состоит из:

  • Конической трубки.
  • Поплавка.

Во время движения жидкости или газа в кольцевом зазоре между поплавком и трубками будет создаваться перепад давления, который в дальнейшем будет создавать силу, действующую навстречу силе веса поплавка, который здесь расположен. Ротаметры на сегодняшний день могут выполняться, как показывающие приборы и как датчики. Обмотка индуктивного датчика располагается на трубке сопла. Железный поплавок в свою очередь будет являться сердечником катушки индуктивного датчика. При изменении расхода поплавок может перемещаться и соответственно изменять индуктивность катушки.

Какие применяются тензометрические датчики

Характеристики

Устройство и принцип работы

Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.

В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.

Преимущества и недостатки тензодатчиков

Широкое применение тензодатчики получили благодаря своим свойствам:

  • возможности монолитного соединения датчика деформации с исследуемой деталью;
  • малой толщине измерительного элемента, что обеспечивает высокую точность измерения с погрешностью 1-3 %;
  • удобстве крепления, как на плоских, так и на криволинейных поверхностях;
  • возможности измерения динамических деформаций, меняющихся с частотой до 50000 Гц;
  • возможности проведения измерений в сложных условиях окружающей среды в температурном интервале от -240 до +1100˚С;
  • возможности измерений параметров одновременно во многих точках деталей;
  • возможности измерения деформации объектов, расположенных на больших расстояниях от тензометрических систем;
  • возможностью измерения деформаций в движущихся (крутящихся) деталях.

Из недостатков следует отметить:

  • влияние метеоусловий (температуры и влажности) на чувствительность датчиков;
  • незначительные изменения сопротивления измерительных элементов (около 1%) требует применение усилителей сигналов.
  • при работе тензодатчиков в условиях высокотемпературной или агрессивной среды необходимы специальные меры их защиты.

Ампераж

Схемы включения датчиков

Принцип действия тензометрического датчика мы уже рассмотрели, поэтому следует сказать о том, как он подключается.

Если речь идет о малых электрических сигналах, то для их измерения идеально подойдет мостовое включение. В центре цепи следует расположить вольтметр. Более простым примером использования станет тензометрическое устройство, схема которого будет собрана в качестве электрического моста. Его подключать нужно в одно из плеч. При этом сопротивление станет таким же, как и у других резисторов, причем в ненагруженном состоянии. Тогда напряжение прибора будет показывать 0.

Если говорить о принципах действия, то у такого устройства они заключаются в том, что величина сопротивления станет увеличиваться или уменьшаться, полностью завися от того, какие усилия будут прикладываться. Следует заметить, что на точность показателей полностью влияет температура резисторов. Если в другое плечо будет включено аналогичное сопротивление, которое не поддается нагрузке, то оно должно компенсировать приспособление. Однако только в том случае, когда оказывается тепловое воздействие. Именно поэтому устройство подобного датчика довольно впечатляет многих покупателей.

Тензодатчик — основные сведения

Тензометрический датчик или тензодатчик, предназначается для измерения деформации, тех или иных объектов исследования. Флуктуации геометрических характеристик образца, приводят к изменению, каких-либо физических свойств датчика, которые могут быть замерены. Используются тензодатчики, для измерения: силы, давления, ускорения, перемещения, крутящего момента. Наиболее простыми, являются механические тензодатчики.
Считывание показаний в них, осуществляется со специальной линейки. Также существуют, пьезорезистивные, оптико-поляризационные, волоконно-оптические датчики. Наибольшее распространение получили тензорезистивные датчики. Это связано, с относительной простотой и надёжностью их работы.
Принцип работы тензорезистивного датчика, основывается на законе, который в 1856 году, открыл лорд Кельвин. Он заключается в том, что под действием растягивающего усилия, которое меняет геометрические характеристики проводника, изменяется, его электрическое сопротивление. Это изменение, можно замерить и сопоставить со степенью деформации датчика, которая в свою очередь, может быть сопоставлена со степенью деформации, исследуемого образца.
В состав измерительного моста, как одно из сопротивлений, включён тензодатчик. Производится калибровка моста, при которой сопротивление между контрольными точками, равно нулю. Одна из проводящих ветвей, снабжена тензодатчиком, а другая уравновешена резистором. При изменении физических параметров тензодатчика, его сопротивление изменяется, а сопротивление резистора на свободной ветви, остаётся неизменным. Это приведёт к тому, что изменится напряжение, между контрольными точками. Закон изменения этого напряжения, будет точно сопоставляться, с изменениями физических параметров, воздействующих на объект исследования, на котором установлен тензодатчик. Вплоть до восьмидесятых годов прошлого века, показания обрабатывались, с помощью бумажных самописцев. В настоящее время, используются электронные методы. Сигнал передаётся на компьютер, где его исследуют специальные программы.

Виды и сфера применения

Для начала разберемся в принципе действия тензометрических датчиков. При воздействии на тело внешних сил оно деформируется, противодействует приложенной силе. За счёт деформаций корпуса датчика происходит воздействие на измерительный элемент тензодатчика. В результате устройство выдаёт электрический сигнал, считывая который система обработки выдаёт результат измерений. Но для чего нужен такой тип устройств?

Тензометрические датчики используются для:

  • Измерения веса. При этом в зависимости от конструкции измерительного узла могут использоваться на сжатие или на растяжение. Соответственно их назначение – измерение веса на платформах (например, весы в магазинах) или на подвесе (краны и прочее).
  • Измерения давления. Например, в трубопроводах газов и жидких веществ.
  • Измерения крутящего момента (на двигателях автомобилей или станков).
  • Определения ускорения.
  • Контроля перемещения.

По типу измерительного элемента и принципа работы тензодатчики делятся на:

  • Тензорезистивные.
  • Пьезоэлектрические.
  • Оптико-поляризационные.
  • Волоконно-оптические.
  • Пьезорезистивные.

Конструктивные особенности тензодатчика определяет то где он применяется, ведь конструкция определяет наличие монтажных отверстий и векторов возможного приложения сил, соответственно и самого процесса измерения. По форме также тензометрические датчики бывают разных типов:

  1. Консольные. Назначение таких устройств – измерение количества веществ в дозаторах, конвейерных, платформенных, бункерных и напольных весах.
  2. Цилиндрические. Применяются для взвешивания вагонов, автомобилей, баков и емкостей – там, где нужно измерять большие веса.
  3. S-образные, срабатывают на растяжение, подходят для измерения веса, поднимаемого краном и в других подобных конструкциях.

На практике тензометрические датчики могут производиться в совершенно разнообразном исполнении.

Критерии выбора

При подборе подходящего устройства обязательно учитывают:

  • место установки, тип технологического процесса и оборудования;
  • диапазон измерений;
  • тип и температура транспортируемой среды;
  • тип унифицированного выходного сигнала;
  • необходимая точность проведения измерений (чем ответственнее технологический процесс, тем выше нужна точность).

Компания «Измеркон» предлагает наиболее востребованные датчики, задатчики, регистраторы, сенсоры и преобразователи давления с высокой точностью. Также здесь можно приобрести цифровые манометры.

Все это — продукция швейцарской компании KELLER. Такое оборудование высокой точностью, стабильностью, надежностью электрических разъемов и технологических присоединений. Для подбора подходящего измерительного устройства в соответствии с требованиями технологического процесса и оборудования достаточно оставить онлайн-заявку или заказать обратный звонок.

Источник

Виды и сфера применения

В промышленных предприятиях в работе находятся разные виды тензодатчиков:

  • устройства, измеряющие нагрузки;
  • приборы контроля перемещения;
  • контролирующие давление;
  • измеряющие ускорение;
  • датчики конструкции станков.

Все датчики разделяются по устройству и типу:

  • плёночные;
  • фольговые;
  • проволочные.

Датчик наклеивается на поверхность фольги. Сделан из полоски фольги 12 мкм. Одна часть плёнки плотная, а другая часть решётчатая. Система позволяет сделать к ней пайку вспомогательных контактов. Данные датчики хорошо зарекомендовали себя в условиях низких температур. Существуютплёночные тензодатчики, которые делаются из тензочувствительных плёнок.

Класификация

Класификация по типу измеряемого давления

  • Датчики абсолютного давления — предназначены для измерения величины абсолютного давления жидких и газообразных сред. Опорное давление — вакуум. Воздух из внутренней полости чувствительного элемента датчика откачан. Например, барометр – частный случай датчика абсолютного давления;
  • Датчики избыточного давления — предназначены для измерения величины избыточного давления жидких и газообразных сред. Опорное давление — атмосферное; таким образом, одна сторона мембраны соединена с атмосферой.
  • Датчики дифференциального давления — предназначены для измерения разности давления среды и используются для измерения расхода жидкостей, газа, пара, уровня жидкости. Давление подается на обе стороны мембраны, а выходной сигнал зависит от разности давлений.
  • Датчики гидростатического давления — предназначены для преобразования гидростатического давления контролируемой среды в сигнал постоянного тока. Измеряют давление столба жидкости, зависящее только от его высоты и от плотности самой жидкости.
  • Датчики вакууметрического давления (разрежение) — предназначены для измерения величины вакуумметрического давления жидких и газообразных сред. Опорное давление в этих датчиках также атмосферное. Однако, в отличие от датчиков избыточного давления, измеряемое давление меньше атмосферного, т.е. существует разрежение относительно атмосферы.
  • Датчики избыточного давления-разрежения — представляют собой сочетание датчиков избыточного и вакуумметрического давлений, т.е. измеряют как давление, так и разрежение.

Класификация по принципу действия

  • Датчики прямого действия — преобразуют внешнее воздействие непосредственно в электрический сигнал, используя соответствующее физическое явление;
  • Составные датчики давления — включают несколько преобразователей энергии.

Класификация по принципу преобразования давления в электрический сигнал

  • Тензорезистивный датчик давления;
  • Пьезорезистивный датчик давления;
  • Ёмкостной датчик давления;
  • Резонансный датчик давления;
  • Индуктивный датчик давления;
  • Ионизационный датчик давления;
  • Пьезоэлектрический датчик давления

4) Проверка тензодатчика в нагруженном состоянии.

Для данного теста тензодатчик должен быть подключен к весовому индикатору или к прибору со стабильным источником питания от 5Vдо 12V. С помощью милливольтметра, подключенного к выходу тензодатчика, нагружают датчик и фиксируют показания выходного сигнала, при снятии нагрузки показания выходного сигнала должны вернуться к исходным. При проведении данного теста необходимо проводить несколько циклов нагружения-разгружения тензодатчика различным весом, но не менее 50% от НПВ датчика. Также необходимо удержание веса не менее 30 мин. в каждом из циклов и анализ изменения показаний в течении данного периода времени. В случае если при проведении теста показания будут отличаться от значения постоянно прикладываемой нагрузки, а также не будут возвращаться к исходным значениям, можно судить о нарушении контакта в клеевом слое между тензорезисторами и упругим элементом. Такой тензодатчик требует замены.

Модели

Ассортимент современных магазинов бытовой техники пестрит разнообразными предложениями электронных измерительных устройств. Но наибольшим спросом пользуется небольшой ряд моделей разных производителей.

Medisana 40419 TargetScale

Пальму первенства занимают многофункциональные весы Medisana 40419 TargetScale. Позволить себе приобрести их могут далеко не все, их цена достигает 15 тысяч рублей. Ими можно управлять с помощью мобильного телефона или другого подобного гаджета на платформе Android или IOS, достаточно синхронизировать их. Принцип работы электронных весов можно оценить сразу, показания будут перед глазами, а не где-то внизу у ног. Можно будет выводить на дисплей графики, показывающие динамику веса, жировых отложений, артериального давления, температуры тела и уровня сахара. Комфорт в управлении сочетается с великолепным внешним оформлением. Говоря простыми словами, «не весы, а сказка».

SUPRA BSS-6200GN

На втором месте рейтинга популярности стоят электрические весы SUPRA BSS-6200GN. Это самый бюджетный вариант, дает возможность узнать не только массу тела, но и содержание в ней жира и мышц. Пользуется спросом у женщин, придерживающихся здорового образа жизни и правильного питания.

Beurer BF-100

Третью позицию занимает модель Beurer BF-100. Погрешность измерений практически исключена. Этот экземпляр имеет восемь электродов, считывающих и передающих данные на компьютер, обладает способностью запоминать информацию не об одном пользователе. Платформа данной модели выполнена в комбинации металла и пластика, оборудованы выносным блоком управления. Стоят около восьми тысяч рублей. Большой популярностью не пользуются, так как, по отзывам покупателей у них крайне неудачная схема измерения состава тела.

1) Проверка сопротивления изоляции.

Для выполнения данного теста, необходимо подключить мегомметр к кабелю тензодатчика и проверить на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Для проверки тензометрических цепей Keli допускается применение мегомметра напряжением не более 50В постоянного тока.

Для функционирующего тензодатчика значение снятых замеров не должно быть ниже 5 Мом. Если значение сопротивления изоляции меньше 1кОм – это свидетельствует о явном коротком замыкании. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями (тензорезисторами), а также в кабеле. При коротком замыкании в кабеле, его можно заменить, если это предусматривает конструкция тензодатчика.

Применение тензометрических датчиков в технике

  1. Часть конструкции весов: при взвешивании корпус датчика упруго деформируется, а вместе с ним наклеенные на него тензорезисторы, соединенные в схему. Электрический сигнал передается на измерительный прибор.
  2. Мониторинг напряженно-деформированного состояния строительных конструкций и инженерных сооружений в процессе их возведения и эксплуатации.
  3. Тензодатчики для измерения усилия деформации при обработке металлов давлением на прокатных станах и штамповочных прессах.
  4. Высокотемпературные датчики для металлургических и других предприятий.
  5. Измерительные датчики с упругим элементом из нержавеющей стали для работы в химически агрессивной среде.

Стандартные тензометрические датчики выполняются в виде шайб, колонн, простых или двусторонних балок, S-образные

Для всех конструкций важно, чтобы сила прикладывалась в одном направлении: сверху вниз или наоборот. При тяжелых условиях работы специальные конструкции дают возможность устранить действие паразитных сил

От этого в большой степени зависят их цены.

На тензометрические датчики цена составляет от сотен рублей до сотен тысяч. Многое зависит от производителя, конструкции, материалов, технологии изготовления, величин измеряемых параметров, дополнительного электронного оборудования. Большей частью они являются составными частями весов разных типов.

Где купить

Мультиметр Multimeter DT 838 - Как пользоваться мультиметромМультиметр Multimeter DT 838 — Как пользоваться мультиметром

Видео: Мультиметр Multimeter DT 838 — Как пользоваться мультиметром

Способы монтажа различных видов тензодатчиков

Главная / Сервисная служба / Документация и программное обеспечение / Статьи Старые / Способы монтажа различных видов тензодатчиков

Монтаж тензодатчиков на растяжение / сжатие

Монтаж тензодатчиков CAS серий SBA/SB/SBS

Модель НПВ Шарнирная головка Гайка Макс. A Макс. B
SBA 50, 100 кг RE-6 M6 × 1.0 133,5 115,5
200, 500 кг, 1 т RE-12А M12 × 1.75 198,8 162,8
2, 3, 5 т RE-18 M18 × 1.5 278 230
SB 20, 50, 100, 200, 500 кг RE-18 M12 × 1.75 198 162
20, 50, 100, 200, 500 кг RE-18 M18 × 1.5 198 162
SBS 500 кг RE-12A M12 × 1.75 199,7 163,7
1, 2 т RE-18 M18 × 1.5 259,7 211,7
5 т RE-24 M24 × 2.0 360 280

Монтаж тензодатчиков CAS CT/CTS

Модель НПВ Шарнирная головка Гайка Макс. A Макс. B
CT 50, 100, 200, 500 кг, 1 т RE-12B M12 × 1.25 253 217
2, 3, 5 т RE-24 M24 × 2.0 392 312
CTS 200, 500 кг, 1 т RE-12B M12 × 1.25 253 217
2, 3, 5 т RE-24 M24 × 2.0 392 312

Способ встройки тензодатчика CAS серии LS

Модель НПВ Узел встройки Шарнирная головка Гайка Макс. A Макс. B
LS 2, 3 т LSTM-2 RE-16 M16 × 2.0 234 190
5 т LSTM-5 RE-18 M18 × 1.5 250 202
10 т LSTM-10 RE-24 M24 × 2.0 349 269
20 т LSTM-20 RE-39 M39 × 2.0 473 371

Монтаж тензодатчиков типа «балка на сдвиг»

Монтаж тензодатчиков для взвешивания подвижного груза (скота)

Модель НПВ Прокладка Шаровая опора Шар Приемникнагрузки
BSS, BSA 500кг, 1, 2т SP-1 BCUPT-1 B-1 LRCV-1
3, 5т SP-2 BCUPT-2 B-2 LRCV-2

Монтаж тензодатчиков с помощью ножки с рокером и ножки шаровой опоры

Модель НПВ Прокладка Ножка с рокером
BSA-xx-TEND 500кг, 1, 2т SP-1
Модель НПВ Прокладка Ножка шаровой опоры
BSS, BSA 500кг, 1, 2т SP-1 SF-M

Монтаж тензодатчиков для взвешивания больших грузов

Особенности: — наибольший предел взвешивания: от 500 кг до 5 т; — оцинковка; — защищенность от внешнего воздействия. Опции: — нержавеющая сталь

Модель A B C D E F G H I J K
BSS/BSA 500 кг, 1, 2 т 101,6 127 17,8 101,6-114,3 17,8 180,9 52,3 101,6 101,6 127 M16
BSS/BSA 3, 5 т 101,6 127 23,9 127-140 29,9 215,9 82,5 101,6 101,6 127 M16

Монтаж тензодатчиков на сжатие / растяжение-сжатие

Монтаж тензодатчиков серии CC

Модель НПВ Нижняя пластина Верхняя пластина Нагрузочный болт A B
CC 50, 100, 200, 500 кг, 1 т MPCC-1 LPCC-1 LBCC-1 M8 MPT-1
2, 3, 5 т MPCC-2 LPCC-2 LBCC-2 M12 MPT-2
10 т MPCC-3 LPCC-3 LBCC-3 M14 MPT-3
20 т MPCC-4 LPCC-4 LBCC-4 M14 MPT-4

Монтаж тензодатчиков серии LS

Модель НПВ Нижняя пластина Верхняя пластина Нагрузочный болт A
LS 2, 3 т MPLS-1 LPLS-1 LBLS-1 M6 × 1.0 L=»65″
5 т MPLS-2 LPLS-2 LBLS-2 M8 × 1.25 L=»65″
10 т MPLS-3 LPLS-3 LBLS-3 M10 × 1.5 L=»85″
20 т MPLS-4 LPLS-4 LBLS-4 M12 × 1.75 L=»105″

Монтаж тензодатчиков серии HC

Модель НПВ Нижняя пластина Верхняя пластина Нагрузочный болт A B
HC 20, 30 т MPHC-1 LPHC-1 LBHC-1 M12 M12 × 1.75
50 т MPHC-2 LPHC-2 LBHC-2 M18 M12 × 1.75
100 т MPHC-3 LPHC-3 LBHC-3 M22 M16 × 2.0
200 т MPHC-4 LPHC-4 LBHC-4 M24 M16 × 2.0

Классификация приборов по принципу действия

От принципа действия или метода, используемого при преобразовании входного сигнала в электрический выходной, датчики измерения классифицируют:

  • Тензометрический метод. Чувствительные детали производят измерение сопротивления при воздействии на тензорезистор, прикреплённый к упругому элементу, который при воздействии давления деформируется.
  • Пьезорезистивный метод. Работает на основе интегральных чувствительных деталей из кремния. Преобразователи из кремния обладают высокой чувствительностью благодаря возможности изменения сопротивления полупроводника. Для измерения характеристик в неагрессивных средах используется Low cost — метод исполнения оборудования, когда чувствительный элемент не оборудован какими-либо степенями защиты. В случае работы в среде где, возможно, оказания на датчик агрессивного вещества, чувствительный элемент оборудуется герметичным корпусом с разделяющей диафрагмой из стали, которая передаёт давление посредством кремниевой жидкости.
  • Ёмкостный метод. Главной частью датчика, работающего по такому методу является ёмкостная ячейка. Её работа заключается в изменении электрической ёмкости между укладкой конденсатора и измерительной мембраны в зависимости. Главным плюсом можно отметить защиту от деформации, при отсутствии давления мембрана восстанавливает свою форму, при этом калибровка такого датчика не требуется. А также высокая стабильность характеристик обусловлена малым влиянием погрешности температуры за счёт небольшого объёма жидкости, которая заполняет внутренний объем ячейки.
  • Резонансный метод. За основу работы по такому принципу взято изменение частоты резонансы колеблющегося элемента при его деформации. Из недостатков можно выделить большое время отклика, и невозможность работы в агрессивных средах без потери измерительной точности.
  • Индуктивный метод. Основывается на регистрации вихревых оков. Измерительный элемент состоит из двух изолированных катушек металлическим экраном. Преобразователь проводит измерение смещения мембраны при отсутствии фактического контакта между двумя поверхностями. Электрический ток генерируется в катушках таким образом, что заряд и разряд катушки происходит на равных отрезках временного промежутка. При изменении положения мембраны создаётся ток в зафиксированной катушке, после чего следует изменение индуктивности системы. Смещение данных основной катушки даёт возможность о преобразовании данных в стандартный сигнал, который по своим параметрам пропорционален оказанному давлению.
  • Ионизационный метод. Работает по принципу регистрации поток ионизированных частиц, как ламповый диод. Лампа оборудуется двумя электродами, катодом, анодом, и нагревателем в некоторых случаях. Преимуществом является возможность регистрировать данные в средах с низким давлением, в том числе и вакуума, но при атмосферном давлении такое оборудование эксплуатировать нельзя.
  • Пьезоэлектрический метод. Задумка основывается на основе пьезоэлектрического эффекта, в котором пьезоэлемент создаёт электрический сигнал, пропорционально воздействию измеряемой среды на него. Используется для измерения постоянно изменяющихся акустических и импульсных сред. Обладает широким диапазоном динамического и частного измерения данных. Обладает небольшой массой, габаритами и высокой надёжностью при эксплуатации в тяжёлых условиях.

Поверка датчиков давления (Сапфир, Метран)Поверка датчиков давления (Сапфир, Метран)

Подробнее о существующих конструкциях

В целом, описываемое устройство представляет собой единую упругую систему, состоящую из резистора и электросхемы, которая связана с весовым дозатором. При изменении сопротивления резистора устанавливается уровень деформации, после чего полученные данные трансформируются в нужные математические и физические величины и выводятся на дисплей весов. Именно таким образом достигается функционирование всего электронного оборудования для взвешивания. Его достаточная точность будет сохраняться и в том случае, когда один из датчиков выйдет из строя, ибо используемые на сегодняшний день схемы предполагают дублирование измерений.

В зависимости от типа весовой чаши (а правильнее сказать — грузоприемной платформы) существуют следующие типы тензоустройств:

  • Консольный тип – в качестве измерительных элементов используется система с измерительным пределом до 7 тонн;
  • Одноточечные приборы (single point), т. е. работающие на одном датчике – их применяют для проведения дозирующих, фасовочных и иных операций, где не требуется большая нагрузка;
  • S-образные устройства —  они предназначаются для оборудования бункерного типа и пропорционально преобразуют механическую силу растяжений/сжатий в электросигнал;
  • Приборы цилиндрические – применяются в контрольно-измерительных многотонных системах;
  • Высокотемпературные устройства – используются при производстве приборов измерения, которые функционируют в условиях экстремальной температуры окружающей среды, к примеру, в плавильной или металлургической промышленности.

Основными требованиями, предъявляемыми к тензоустройствам, являются влагоустойчивость, слабая восприимчивость к агрессивным средам, расчет на длительный эксплуатационный срок. Кроме всего, датчики должны быть чувствительны к любой повышенной механической нагрузке.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий