Тепловое излучение

Как происходит процесс лечения?


Свет — это энергия. Она проникает в кожу на разных уровнях, максимизируя преимущества и целебные свойства спектра красного света.

Когда инфракрасный свет проникает в кожу, он активирует естественные целебные свойства нашего организма на клеточном уровне.

Свет стимулирует кровообращение, что также приводит к увеличению активности лимфатической системы, что в свою очередь способствует дренированию интерстициальной жидкости из тканей и переносит лейкоциты в те районы, где они крайне необходимы. Известны такие плюсы:

  • активизируются метаболические процессы организма;
  • стимулируется создание коллагена и фибробластов;
  • увеличивается очистка клеток и уменьшается уровень воспаления.

Более того, научно было доказано, что инфракрасное излучение вызывает всплески образования оксида азота в организме, что наиболее заметно влияет на становление сердечно-сосудистого здоровья человека. Оксид азота помогает расслабить сосудистую систему, а также обеспечить более богатое поступление кислорода в кровь и его содержание там.

Это безусловно, полезно для всех, но особенно для пациентов с повышенным риском сердечного приступа, а также спортсменов, стремящихся повысить физическую работоспособность и выносливость.

Многие профессиональные спортсмены за рубежом уже достаточно давно используют инфракрасные сауны в качестве средства стимулирования кровообращения во время выступлений. L-аргинин, который также является довольно значимым веществом среди телостроителей и одним из основных прекурсоров оксида азота, также показывает ускоренные показатели выработки под воздействием инфракрасного света.

Следим за молекулами идеального газа

Некоторые свойства молекул идеального газа можно изучать, как если бы эти молекулы мчались, как автомобили вокруг вас. Например, среднюю кинетическую энергию для каждой молекулы можно вычислить с помощью очень простой формулы:

где ​\( k \)​ — постоянная Больцмана, равная 1,38·10-23 Дж/К, а ​\( T \)​ — температура. А так как можно получить массу каждой молекулы, если знать, для какого газа ведется расчет (см. выше), то можно вычислить скорости молекул при различных температурах.

Вычисляем скорость молекул воздуха

Представьте, что в один прекрасный весенний день вы находитесь с друзьями на пикнике. У вас прекрасное угощение: картофельный салат, бутерброды и напитки. Но спустя некоторое время вы вспоминаете о физике, заваливаетесь на спину и начинаете смотреть в небо. Физика на пикнике, что может быть скучнее? Вот уж нет. Физика присутствует всюду: в любом месте и в любое время, даже если прямые признаки ее присутствия совсем не очевидны.

Даже если снующие вокруг молекулы воздуха не видны, с помощью законов физики вы легко сможете вычислить их среднюю скорость. Все, что вам нужно, — это калькулятор и термометр. Допустим, что измеренная температура воздуха оказалась примерно равной 28°С, или 301 К (о том, как преобразовывать друг в друга градусы Цельсия и Кельвина, можно узнать в главе 13). Как известно, среднюю кинетическую энергию молекул, находящихся в воздухе, можно вычислять с помощью формулы:

Остается подставить в нее численные значения:

Итак, “среднестатистическая” молекула обладает кинетической энергией, равной 6,23·10-21 Дж. Однако молекулы очень малы — так какие же скорости будут соответствовать этому значению? Как можно узнать в главе 8:

где ​\( m \)​ и ​\( v \)​ — это, соответственно, масса и скорость, тогда:

Воздух в основном состоит из молекул азота N2 (около 78%) и молекул кислорода O2 (около 21%). Без большой утраты точности предположим, что воздух в основном состоит из молекул азота. Молекула азота имеет массу, примерно равную 4,65·10-26 кг (которую вы можете вычислить сами, зная молекулярную массу азота и затем поделив ее на число ​\( N_А \)​). Подставив в последнюю формулу числа, получим:

Ух! Только себе представьте себе, что такое громадное количество “малышей” каждую секунду врезается в вас со скоростью 1861 км/ч! Хорошо, что молекулы такие маленькие. Представьте, если бы каждая молекула воздуха весила примерно килограмм.

Вычисляем внутреннюю энергию идеального газа

Атомы и молекулы обладают очень малой массой, но их в газах очень много, а поскольку все они обладают кинетической энергией, то можно определить их общую кинетическую энергию или ту часть внутренней энергии газа, которая состоит из энергии движения его молекул. Итак, какой кинетической энергией обладает известное количество газа? Каждая молекула обладает средней кинетической энергией:

Чтобы получить общую кинетическую энергию, надо среднюю кинетическую энергию умножить на количество имеющихся молекул, равное \( nN_А \), где ​\( n \)​ — это количество молей:

Здесь \( N_Аk \) равняется \( R \), т.е. универсальной газовой постоянной (см. ранее в этой главе), поэтому прежняя формула принимает вид:

Итак, 600 молей гелия при температуре 27°С обладают следующей внутренней энергией, которая связана с тепловым движением молекул:

Это чуть больше половины килокалории! Такого рода единицу измерения условной энергетической ценности продуктов питания (ккал) можно найти на их упаковках.

Польза и влияние на организм человека

Для человеческого организма излучение ИК спектра представляет множество полезных качеств, а именно:

  • способствует расслаблению мышц;
  • снижает артериальное давление;
  • лечит инфекции бактериального происхождения;
  • оказывает общеукрепляющее воздействие;
  • в результате точечного влияния тепловых колебаний на определенные органы и области организма снижается развитие заболеваний и достигается положительная динамика в общей терапии.

Помимо перечисленных областей применения ИК излучение широко вошло в технических разработках даже бытового применения. Ярким примером можно считать ИК-датчики в системах сигнализации, пульты дистанционного управления для систем освещения и управления разными бытовыми приборами, устройства ночного видения и т.п.

Тепловое излучение и его характеристики

Определение 2

Находящиеся два тела при одинаковой температуре могут поглотить за определенный промежуток времени разные количества энергии, тогда их тепловое излучение будет неодинаковым.

Тело характеризуется относительной способностью к поглощению тепла, то есть монохроматическим коэффициентом поглощения или поглощательной способностью Av,T. С его помощью возможно определение доли энергии dWpad, которая доставляется при помощи электромагнитных волн за единицу времени, приходящейся на единицу площади поверхности тела, поглощается телом dWpogl( предел нахождения частот волн от ν до ν+dν). Математическая запись выражения определения Aν,T выглядит таким образом:

Aν,T=dWpogldWpad (1).

Коэффициент является безразмерной величиной. Aν,T находится в зависимости от частоты излучения, температуры и материала тела, состояния поверхности и ее формы.

Слишком сложно?
Не парься, мы поможем разобраться и подарим скидку 10% на любую работу

Опиши задание

Взаимосвязь тела и температуры

Чтобы понимать, что же такое лучистый теплообмен, необходимо знать основы законов физики об инфракрасном излучении

Важно помнить, что любое тело, температура которого выше нуля в абсолютной отметке, всегда излучает энергию теплового характера. Она лежит в диапазоне инфракрасного спектра волн электромагнитной природы

Однако разнообразные тела, имея одинаковый показатель температуры, будут обладать разной способностью испускать лучистую энергию. Эта характеристика будет зависеть от различных факторов, таких как: строение тела, природа, форма и поверхностное состояние. Природа электромагнитного излучения относится к двойственной, корпускулярно-волновой. Поле электромагнитного типа имеет квантовый характера, а его кванты представлены фотонами. Взаимодействуя с атомами, фотоны поглощаются и передают свой запас энергии электронам, фотон исчезает. Энергия показателя теплового колебания атома в молекуле возрастает. Другими словами, излучаемая энергия превращается в теплоту.

Излучаемая энергия считается главной величиной и обозначается знаком W, измеряется джоулями (Дж). В потоке излучения выражается среднее значение мощности за промежуток времени, гораздо превышающий периоды колебаний (энергия излучаемая в течении единицы времени). Излучаемая потоком единица выражается в джоулях, деленных на секунду (Дж/с), общепринятым вариантов считается ватт (Вт).

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда — Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Вступление в теплообмен

Чтобы понять суть лучистого теплообмена, необходимо для начала понимать его суть и знать, что это такое?

Теплообмен – это изменение показателя энергии внутреннего типа без протекания работы над объектом или субъектом, а также без совершения работы телом. Такой процесс всегда протекает в конкретном направлении, а именно: тепло переходит от тела с большим показателем температуры, к телу с меньшим. По достижению выравнивания температур между телами процесс прекращается, а осуществляется он при помощи теплопроводности, конвекции и излучения.

  1. Теплопроводность – это процесс передачи энергии внутреннего типа от одного фрагмента тела к другому или между телами при совершении ими контакта.
  2. Конвекция – это теплопередача, осуществляемая в результате переноса энергии вместе с жидкостными или газовыми потоками.
  3. Излучение носит электромагнитный характер, испускается благодаря внутренней энергии вещества, которое находится в состоянии определенной температуры.

Формула тепла позволяет делать расчеты по определению количества переданной энергии, однако измеряемые величины зависят от природы протекающего процесса:

  1. Q = cmΔt = cm(t2 – t1) – нагревание и охлаждение;
  2. Q = mλ – кристаллизация и плавление;
  3. Q = mr – паровая конденсация, кипение и испарение;
  4. Q = mq – сгорание топлива.

Меры защиты от вредных лучей

В зону риска получить коротковолновое инфракрасное излучение входят любители долго проводить время под палящим солнцем, рабочие цехов, где применяются свойства тепловых лучей. Чтобы обезопасить себя, необходимо соблюдать простые рекомендации:

  1. Любителям красивого загара сократить время пребывания на солнце, перед выходом на улицу открытые участки кожи смазывать защитным кремом.
  2. Если рядом находится источник сильного тепла, уменьшить интенсивность нагревания.
  3. При работе в цехах с высокой температурой, работники должны быть снабжены средствами личной защиты: специальная одежда, головные уборы.
  4. Время пребывания в помещениях с высокой температурой должно быть строго регламентировано.
  5. При проведении процедур надевать защитные очки для сохранения здоровья глаз.
  6. В комнатах устанавливать только качественную бытовую технику.

Различные виды излучений окружают человека на улице и в помещениях. Осведомленность о возможных негативных последствиях поможет сохранить здоровье в будущем. Ценность инфракрасного излучения неоспорима для улучшения жизнедеятельности человека, но существует и патологическое влияние, которое нужно ликвидировать, соблюдая нехитрые рекомендации.

Методы лечения


Терапия с помощью инфракрасного цвета делится на два типа: местная и общая. При первом типе отмечается локальное воздействие на тот или иной участок, а при общем лечении волны обрабатывают весь организм человека. Процедура проводится два раза в день по 15-30 минут. Курс лечения составляет от 5 до 20 сеансов. Необходимо обязательно надевать защитные средства при излучении. Для глаз используются картонные накладки или специальные очки. После процедуры на коже появляется покраснение с размытыми границами, которое пропадает по истечении часа после воздействия лучей. Инфракрасное излучение в медицине очень ценится.

Тепловая энергия ежедневно сопровождает человека в повседневной жизни. Инфракрасное излучение приносит не только пользу, но и вред

Поэтому требуется к ультракрасному свету относиться осторожно. Устройства, которые излучают эти волны, должны использоваться по правилам безопасности

Многие не знают, вредно ли тепловое воздействие, но при правильном применении приборов можно улучшить состояние здоровья человека и избавиться от тех или иных заболеваний.

Тепловые явления

Определение

Явления, которые связаны с изменением температуры тела, приводящей к его нагреванию или охлаждению, называют тепловыми. 

В качестве примера можно привести нагревание и охлаждение воздуха, таяние льда, плавление металлов и др.

Закон сохранения энергии

Закон сохранения энергии постулирует, что в природе не происходит возникновения или исчезновения энергии. Энергия существует всегда, просто она превращается из одного вида в другой, передается от одного тела другому, и при этом ее значение сохраняется.

Уравнение, иллюстрирующее закон сохранения механической энергии, выглядит так:

\(E_{k_1}+E_{p_1}=E_{k_2}+E_{p_2}\)

и означает следующее: 

Сумма кинетической и потенциальной энергии тел, которые находятся в замкнутой системе и взаимодействуют между собой силами тяготения и упругости, остается постоянной.

В данном уравнении \(E_{k_1}\) и \(E_{k_2}\) — кинетическая энергия тела, \(E_{p_1}\) и \(E_{p_2}\) — потенциальная энергия тела.

Полная механическая энергия (E) будет определяться по формуле:

\(E=E_k+E_p\)

где \(E_k\) — кинетическая энергия, \(E_p\) — потенциальная.

Формула вычисления количества теплоты

Внутренняя энергия тела может изменяться двумя путями:

  • за счет совершения работы; 
  • без совершения работы, за счет теплопередачи. 

Определение

Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты.

Определяется по формуле:

\(Q=c\times m\times\left(t_2-t_1\right)\)

где Q — количество теплоты, измеряемое в джоулях, c — удельная теплоемкость, m — масса тела, \(t_1\) — начальная, \(t_2\) — конечная температуры.  

Формула вычисления количества теплоты при сгорании топлива

Определение

Количеством теплоты при сгорании топлива называется величина, которая равняется количеству энергии, выделяемой при полном сгорании топлива. 

Для определения количества теплоты при сгорании топлива необходимо знать удельную теплоту сгорания q — количество теплоты, которое выделяет 1 килограмм топлива при полном сгорании.

Формула выглядит так:

\(Q=q\times m\)

где Q — количество теплоты при сгорании топлива, измеряется в джоулях, m — масса топлива.

Количество теплоты плавления (кристаллизации)

Определение

Количество теплоты плавления или кристаллизации — это физическая величина, которая показывает, какое количество теплоты необходимо для плавления тела при условии, что оно находится в условиях температуры плавления и нормальном атмосферном давлении. 

Для определения количества теплоты плавления нужно знать удельную теплоту плавления (\lambda) — величину, показывающую, какое количество теплоты необходимо дать кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние.

Количество теплоты плавления определяется по формуле:

\(Q=\lambda\times m,\)

Количество теплоты кристаллизации находят таким образом:

\(Q=-\lambda\times m\)

где Q — количество теплоты плавления или кристаллизации, измеряется в джоулях, m — масса тела.

Формула вычисления абсолютной влажности

Определение

Влажностью воздуха называется содержание водяного пара в атмосфере, которое возможно за счет непрерывного испарения воды с поверхности водоемов.

Абсолютная влажность (ρ) показывает плотность водяного пара, т.е. сколько граммов водяного пара содержится в воздухе объемом 1 кубический метр при заданных условиях.

Вычисляется по формуле:

\(p=\frac mV\)

где m — масса водяного пара в воздухе, V — объем воздуха.

Измеряется в \(г/{м^3}\).

Вычисление относительной влажности воздуха

Определение 6

Относительная влажность воздуха \((\varphi)\) — это отношение абсолютной влажности воздуха (ρ) к плотности насыщенного водяного пара при той же температуре (\(ρ_0\)), выражается в процентах.

Насыщение водяного пара зависит от:

  • температуры;
  • количества водяных паров;
  • давления.

Соответственно, относительную влажность воздуха можно вычислить при помощи формулы:

\(\varphi=\frac p{p_0}\times100\%\)

КПД тепловой машины

С помощью коэффициента полезного действия (КПД) двигателя определяют экономичность различных тепловых двигателей.

Определение

КПД называется отношение совершенной двигателем полезной работы к энергии, полученной от нагревателя.

КПД двигателя находят по формуле:

\(\eta=\frac{Q_1-Q_2}{Q_1}\times100\%\)

где \eta — КПД, выражается в процентах; \(Q_1\) — количество теплоты, полученное от нагревателя, \(Q_2\) — количество теплоты, отданное телом холодильнику.

Воздействие на человека

Влияние инфракрасного излучения на организм человека неоднозначно. Разная длина волны способна запустить непредсказуемые реакции. Особенно внимательно нужно относиться к солнечному теплу, которое может нанести вред и стать провоцирующим фактором для запуска негативных патологических процессов в клетках.

Лучи с длинными волнами попадают на кожу и активируют тепловые рецепторы, передавая им приятное тепло. Именно данный диапазон частот активно используется для лечебного воздействия в медицине. Большая часть тепла адсорбируется кожей, попадая на ее поверхность. Слабое воздействие гарантирует приятный нагрев поверхности кожи, не затрагивая внутренних органов.

Волны с длиной волны 9,6 мкм способствуют обновлению эпидермиса, укрепляют иммунитет, оздоравливает организм. Физиотерапия основана на использовании длинных инфракрасных волн, запуская следующие процессы:

  • улучшается кровообращение при расслаблении гладкой мускулатуры после передачи информации в гипоталамус при воздействии на поверхностный слой кожи;
  • нормализуется кровяное давление после расширения сосудов;
  • клетки организма в большей степени снабжаются питательными веществами и кислородом, что улучшает общее состояние;
  • биохимические реакции протекают быстрее, что влияет на процесс обмена веществ;
  • улучшается иммунитет и повышается сопротивляемость организма к патогенным микроорганизмам;
  • ускорение метаболизма помогает вывести токсические вещества и уменьшить зашлакованность.

Энергия Солнца

Солнце по праву является мощнейшим излучателем энергии, носящей тепловой характер. Оно обогревает нашу планету с расстояния в сто пятьдесят миллионов километров. Показатель интенсивности солнечного излучения, который был зарегистрирован в течение многих лет и различными станциями, находящимися в разнообразных уголках земли, соответствует приблизительно 1.37 Вт/м2.

Именно энергия солнца является источником жизни на планете Земля. В настоящее время множество умов занимаются попытками найти наиболее эффективный способ ее использования. Сейчас нам известны солнечные батареи, способные обогревать жилые постройки и получать энергию для нужд повседневности.

Кипятим воду: конвекция

Конвекция — один из основных способов передачи тепловой энергии из одного места в другое. Она происходит при нагревании вещества, подобного, например, воздуху или воде. Дело в том, что при нагреве некоторая более теплая часть вещества становится менее плотной, чем остальная более холодная часть, и эта теплая и менее плотная часть поднимается вверх. Посмотрите (рис. 14.1) на кастрюлю, в которой нагревается вода. Как тепловая энергия переносится в воде? Вода поблизости от нагревательного элемента нагревается, расширяется и становится менее плотной. Нагретая менее плотная вода поднимается вверх, а охладившаяся и, следовательно, более плотная, опускается вниз, в результате чего возникают восходящие и нисходящие потоки воды. Чтобы увидеть, как происходит конвекция, бросьте в кастрюлю немного мелкой лапши и понаблюдайте за ее циркуляцией (повторяющимися движениями вверх и вниз). Здесь передатчиком тепловой энергии является движущаяся вода.

Впрочем, конвекция может обойтись и без воды; то же явление происходит с воздухом и многими другими веществами. Возможно, вы видели, как птицы, летая кругами и поднимаясь все выше и выше, парят в восходящих потоках теплого воздуха. Эти потоки создаются конвективным движением воздуха, нагретого у поверхности земли.

Возможно, вы слышали выражение “поднимается жара”. Оно-то и относится к конвекции. Горячий воздух расширяется и становится менее плотным, чем находящийся вокруг него холодный воздух. В результате этого горячий воздух поднимается. Таким образом, если у вас имеется двух- или трехэтажный дом с открытым лестничным маршем, тогда весь воздух, заботливо нагреваемый вами зимой, будет благополучно собираться на самом верхнем этаже. Кроме того, конвекция поднимает в комнатах тепловую энергию от радиаторов отопления, приводя в некоторой степени к циркуляции окружающего воздуха. Чтобы усилить распространение тепловой энергии, кое-кто использует потолочные вентиляторы. Если ранее вы сталкивались с такими проявлениями конвекции, то теперь знаете принцип ее работы. Впрочем, имеются и другие явления, связанные с нагреванием, о которых вы и не подозреваете. Так что читайте дальше!

Излучательная способность абсолютно черного тела

Лабораторные условия позволяли проводить практические исследования излучательной способности r (λ, T), лежащей в инфракрасной области. Чтобы максимум попал в видимую часть спектра, необходимо выполнение условия T≥5·103. Солнце излучает максимум энергии на 470 нм, определяемой зеленой областью спектра. Происходит соответствие температурных режимов своем Солнца, равных 6200 К, при рассмотрении его как абсолютно черного тела.

После введения законов Стефана-Больцмана и Вина получилось изобразить кривую спектрального распределения излучения черным телом r (λ, T). Д. Релей решил проблему о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия, основываясь на своих суждениях.

Определение 10

Позднее Джинс сумел получить зависимость излучательной способности абсолютно черного тела от длины волны и температуры, которая записывалась как r λ, T=8πkTλ-4. Данное соотношение получило название формулы Релея-Джина.

Она применяется только для длинных волн, как показано на рисунке 5.1.3. Таким образом следует вывод, что интегральная светимость R (T) черного тела обращается в бесконечность, то есть произойдет равновесие между нагретым телом и излучением замкнутой полости.

Рисунок 5.1.3. Сравнение закона распределения энергии по длинам волн r (λ, T) в излучении абсолютно черного тела с формулой Релея–Джинса при T=1600 К.

Отсюда следует, что опыт имеет множество противоречий. Для решения задачи М. Планк основывался на классической физике.

Определение 11

Исследования показали, что энергия излучения и её поглощение нагретыми телами происходит с перерывами, так называемыми квантами.

Определение 12

Квантом называют минимальную порцию энергии, которая излучается или поглощается телом.

Определение 13

Следуя закону Планка для теплового излучения, получаем, что энергия кванта Е прямо пропорциональна частоте света, то есть E=hν, где h является постоянной Планка, имеющая значение h=6,626·10-34 Дж·с. Она является универсальной константой квантовой физики.

Гипотеза о прерывистом характере процессов излучения и поглощения излучения дала толчок на получение формулы спектральной совместимости абсолютно черного тела. Имеется форма записи формулы Планка, выражающая распределение энергии, исходя из частот, а не по длинам волн.

r ν, T=2ν2c2hνehνkT-1.

Значение с принимает скорость света, h – постоянная Планка, k – постоянная Больцмана, Т – абсолютная температура.

Определение 14

Если частоты различные, то для описания спектрального распределения излучения черного тела подойдет формула Планка для теплового излучения. Из нее выводится закон Стефана-Больцмана и Вина для теплового излучения. Если выполняется условие hν≪kT, тогда происходит переход к формуле Релея-Джинса.

Решение проблемы излучения черного тела говорило о появлении новой эры в физике, ученым пришлось отказаться от классических представлений для понятия квантования.

Рисунок 5.1.4. Модель излучения абсолютно черного тела.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Патологическое влияние

Противоположное действие оказывают волны с короткой длиной волны. Вред инфракрасного излучения обусловлен интенсивным тепловым эффектом, который вызывают короткие лучи. Сильный тепловой эффект распространяется вглубь тела, вызывая нагревание внутренних органов. Перегревание тканей приводит к обезвоживанию и значительному повышению температуры тела.

Кожные покровы в месте попадания инфракрасных лучей малой длины краснеют и получают термический ожог, иногда второй степени тяжести с появлением волдырей с мутным содержимым. Капилляры на месте поражения расширяются и лопаются, приводя к мелким кровоизлияниям.

Клетки теряют влагу, организм становится ослабленным и подвержен заболеванию инфекциями разного характера. Если инфракрасное излучение попадает в глаза, данный факт оказывает разрушительное действие на зрение. Слизистая глаза становится сухой, сетчатка подвергается негативному влиянию. Хрусталик теряет свою эластичность и прозрачность, что является одним из симптомов катаракты.

Общее повышение температуры тела приводит к тепловому удару, которое при неоказании помощи может приводить к необратимым последствиям. Основные признаки теплового удара:

  • общая слабость;
  • сильная головная боль;
  • помутнение в глазах;
  • тошнота;
  • учащение сердечных сокращений;
  • появление холодного пота на спине;
  • кратковременная потеря сознания.

Выводим закон идеального газа

Описание поведения газообразных состояний так, как того требует физика, начинается тогда, когда мы перейдем на уровень атомов и молекул. Как используется понятие “моль” для описания физических процессов при нагревании газов? Оказывается, что поведение разных газов можно связать друг с другом с помощью таких уже известных нам физических понятий, как моли, температура, давление и объем. Эта связь не совсем точна для реальных газов в природе, но очень хорошо описывает поведение идеальных газов. (Идеальный газ — это газ, в котором взаимодействие молекул сводится к парным столкновениям, причем время межмолекулярного столкновения много меньше среднего времени между столкновениями. — Примеч. ред.) Однако некоторые реальные газы, например гелий, с очень хорошей точностью описываются как идеальные, и именно они образуют надежный экспериментальный “оплот” термодинамики.

Экспериментально доказано, что если нагревать газ, сохраняя его объем неизменным, то, как показано на рис. 14.5, давление газа будет расти линейно. Другими словами, при постоянном объеме:

где ​\( T \)​ — температура, измеренная в кельвинах, а ​\( P \)​ — давление.

Если менять объем, то можно заметить, что давление будет ему обратно пропорционально, т.е. при увеличении объема газа в два раза, давление этого газа в два раза уменьшится:

С другой стороны, когда объем и температура идеального газа постоянны, то давление пропорционально количеству имеющихся молей газа — при увеличении количества газа в два раза, давление удваивается. Если количество молей равно ​\( n \)​, то:

Вставив в формулу постоянную ​\( R \)​ (так называемую универсальную газовую постоянную, значение которой равно 8,31 Дж/(моль·К), получим закон идеального газа, связывающий друг с другом давление, объем, количество молей и температуру:

Отношение \( R/N_А \) также называется постоянной Больцмана ​\( k \)​ и равно 1,38·10-23 Дж/К. С использованием этой константы закон идеального газа принимает такой вид:

Давление: пример использования закона идеального газа

Допустим, что имеется резервуар объемом 1 м3, заполненный 600 молями гелия (очень близкого к идеальному газу) при комнатной температуре в 27°С. Каким будет давление газа? Используя следующую форму уравнения идеального газа:

получим следующую формулу, в которую подставим численные значения:

Давление во все стенки сосуда равно 1,50·106 Н/м2

Обратите внимание на используемую единицу измерения давления, Н/м2. Эта единица измерения используется настолько широко, что имеет в системе СИ собственное название — паскаль, или Па

Атмосферное давление равно 1,013·105 Па. Кроме того, давление в одну атмосферу иногда указывают в единицах торр и 1 атмосфера = 760 торр. А в нашем примере давление равно 1,50·106 Па, или примерно 15 атмосфер.

Закон Бойля-Мариотта и закон Шарля: альтернативные формулировки закона идеального газа

Закон идеального газа часто формулируют по-разному. Например, можно выразить отношение между давлением и объемом идеального газа до и после того, как одна из этих величин изменится при постоянной температуре:

Из этой формулы, выражающей закон Бойля-Мариотта, следует, что при прочих неизменных условиях произведение ​\( PV \)​ будет сохраняться.

Далее, если давление постоянно, то можно сказать, что:

Из этой формулы, выражающей закон Шарля, следует, что для идеального газа при прочих неизменных условиях будет сохраняться отношение ​\( V/T \)​.

Аналогично, если объем постоянен, то можно сказать, что:

Из этой формулы, выражающей закон Гей-Люссака, следует, что для идеального газа при прочих неизменных условиях будет сохраняться отношение ​\( P/T \)​.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий