Из чего состоит и как работает солнечная батарея

Преимущества использования фотоэлементов

Правильно составленная схема подключения таких элементов в датчики обладает множеством преимуществ для владельцев приусадебного участка. Среди них можно выделить:

  • Экономия электроэнергии. Особенно большая экономия наблюдается при установке фотоэлемента с датчиком движения.
  • Дает возможность управлять светом на территории.
  • Позволяет регулировать яркость свечения.
  • Низкая стоимость.
  • Доступность монтажа.
  • Длительный срок эксплуатации ламп.

Фотоэлемент

Такие элементы устанавливаются не только в фотореле, они также являются частью выключателя и фиксируют изменения тока. Именно на этом основана работа выключателя – при падении тока в сети свет гаснет.

Применение солнечной батареи

Постепенно происходит внедрение солнечной батареи во многие отрасли жизнедеятельности человека.

Например, солнечные батареи используются:

  • В автомобилестроении;
  • В промышленных объектах;
  • В сельском хозяйстве;
  • На военно-космических объектах;
  • В бытовых нуждах;

Это Интересно! Одним из первых вариантов появления прибора с солнечной батареей был калькулятор, способный работать только при попадании на его фотоэлемент солнечных лучей.

Сейчас солнечными батареями оснащают некоторые модели походных рюкзаков. Они служат источником света, электричества в условиях отсутствия цивилизации.

Использование солнечной батареи как источника электроэнергии интересует все большее количество людей, причем не только в бытовых нуждах, но и для обеспечения электроэнергией предприятий. Для того чтобы эта система была эффективной необходимо знать ее устройство и принцип работы. Это поможет подобрать компоненты в зависимости от желаемой мощности установки.

Принцип работы солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Специфические датчики

Световая решетка

Это две линейки, расположенные точно напротив. На одной расположены светодиоды, на другой – фотодиоды. Таким образом, анализируя перекрытие пар свето/фотодиод, можно измерить с некоторой погрешностью геометрические данные объекта. Например, высоту или ширину объекта.

Световой барьер – линейка для измерения геометрии объектов

Световая решетка подключается к специализированному контроллеру, которые дает данные на главный контроллер.

Световой барьер

Он используется в основном для безопасности, для недопущения людей, или неправильной формы предметов в контролируемую зону.

Пара фоток, чтоб было понятно, о чем речь:

Барьер безопасности – по конвейеру проходит только то, что нужно, и только тогда, когда нужно!

Барьер в системе с датчиками

Это довольно сложная система, в которую кроме того ещё входят минимум 2 рефлекторных датчика (на фото – 4) и свой контроллер.

Лазерные

Это оптические датчики, в которых есть возможность измерения расстояния до объекта.

Лазерный оптический датчик

Лазерный оптический датчик с отображением расстояния

Лазерный оптический датчик с измерением расстояния

Принцип действия – измерение времени прохождения луча. Как в радиолокации.

Щелевые датчики

Отдельный вид датчиков с приемником и передатчиком – щелевые датчики (вилкообразные). Они удобны тем, что хоть передатчик и приемник разнесены, но расположены фактически в одном корпусе, в конструкции которого есть щель.

Щелевые оптические датчики. Два датчики, одно кольцо с прорезями.

Когда в щель между излучателем и приемником попадает активатор (предмет), датчик срабатывает. Щелевые датчики удобны там, где объект, перемещение которого детектируется, имеет небольшую фиксированную толщину.

Оптоволоконные, или волоконно-оптические

Мне встречались такие датчики в диффузном исполнении, и с приемником+передатчиком.

Смысл в том, что оптические элементы и электронная схема разнесены в пространстве, а свет передается посредством оптоволокна (пластиковый фибер).

Чувствительный элемент оптоволоконного датчика

Видите красную точку? Это выход волоконно-оптического датчика.

В отдалении на расстоянии 4 метра стоят такие блоки оптоволоконных усилителей (для трех датчиков):

Оптоволоконные усилители для датчиков

Такую систему ставят там, где очень стесненное пространство (как настраивать?) и там, где электроника работать не любит – вибрация, влажность, высок риск повреждения.

Ещё несколько фото датчиков с оптоволоконным кабелем:

Два приемопередатчика с оптоволоконными проводами к электронному блоку. Видите потертости? Это следы от индуктивных датчиков, которые постоянно ломались из-за несовершенства механики…

Электронный блок (оптоволоконный усилитель)

Оптическая часть волоконно-оптического датчика. Даже сфотографировать проблематично, не то что настроить!

Электронные блоки – оптоволоконные усилители к оптоволоконным датчикам на фото выше.

Аналоговые

Аналоговыми эти датчики являются по виду выходного сигнала. Принцип работы может быть как у лазерного, или просто измеряется интенсивность отраженного сигнала.

Аналоговый датчик

В данном случае – аналоговый сигнал, соответствующий расстоянию до поверхности разматываемой катушки, подается на аналоговый вход контроллера (АЦП). И контроллер рассчитывает диаметр катушки.

Оптический датчик, измеряющий расстояние до объекта. Красная точка справа показывает место измерения. Корпус датчика защищен от ударов элементом крепления

Этот же датчик приведен в самом начале статьи. У него также есть и дискретный выход, который можно запрограммировать, и он сработает при определенном расстоянии.

Оптический датчик пламени

Этот датчик стоит особняком – он воспринимает свет от пламени сгораемого газа либо другого топлива. Используется в промышленных котельных, где нужна повышенная безопасность.

Вот такая есть модель:

Датчик пламени для котельной с дискретным выходом

Или такой:

Датчик наличия пламени от сгорания газа

Принцип действия – как у радиолампы.

Схема фотореле на фоторезисторах. Принцип работы и область применения

Фоторезистор, представляет собой непроволочный полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности . В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Схема устройства фотоэлементов с внутренним фотоэффектом, носящих название фотосопротивлений (ФС) или фоторезисто¬ров, приведена на рис. 16-а. Фотосопротивление представляет собой стеклянную пластинку, покрытую тонким слоем полупроводникового материала (сернистого свинца, сернистого висмута, сернистого кадмия), на котором расположены токопроводящие электроды. Сущность внутреннего фотоэффекта сводится к следующему. Известно, что электропроводимость связана с количеством носите¬лей заряда, который имеет тот или иной материал. В полупровод¬никах количество носителей электрических зарядов может увеличиваться вследствие поглощения энергии извне, в частности под воздействием световой энергии. Увеличение количества носителей электрических зарядов в мате¬риале повышает, его способность проводить электрический ток.

Рис.16 Фотосопротивление В результате этого уменьшается электрическое сопротивление осве-щаемого материала. Отличительная особенность фотосопротивлений от фотоэлемен¬тов с внешним фотоэффектом заключается в том, что при внешнем фотоэффекте электроны покидают пределы освещенного материала, а при внутреннем фотоэффекте они остаются внутри материала, увеличивая тем самым количество носителей электрических зарядов. Изменение проводимости в полупроводниках под воздействием света может быть очень большим. В некоторых материалах при переходе от темноты к интенсивному освещению сопротивление уменьшается в десятки раз и соответственно изменяется величина тока в цепи фотосопротивлений (рис. 16-б). Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два- три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селенокадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов.

Схема включения фоторезисторов:

Рис.17 Схема фотореле на фоторезисторе При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого- либо устройства (схематично показано в виде некоторого сопротивления нагрузки).

Окончание работ

Последний штрих – это сама установка розеток в гипсокартон, ради чего и была проделана вся эта подготовительная работа. Меряем и обрезаем провода из подрозетника до нужной длины. Для удобства оставляем длину 5 – 7 см. Этого размера достаточно для нормального подсоединения проводов.

Розетки, купленные специально под гипсокартон, бывают разных моделей, но предпочтительнее не с пластиковым, а с металлическим ободком. В случае нештатной ситуации больше вероятности замыкания провода через металл на «землю», что вызовет срабатывание автомата защиты.

Желательно, чтобы розетки, которые устанавливаем в гипсокартоне, были заземлены. Для этой цели существуют трехжильные кабеля, заземляющий провод – желтый с зеленым, или просто желтый. Его подключаем на клемму заземления. Остальные две жилы – фаза и ноль.

Совет: концы проводов хорошо залудите паяльником, либо наденьте специальные наконечники. Зажимайте болты максимально крепко, но не сорвите резьбу.

Когда все готово вставляем сердцевину в коробку, зажимаем винтами, после чего надеваем пластиковую крышечку и тоже закручиваем болтик. Монтаж окончен.

Как показывает практика, установить розетки в специальные коробки под гипсокартон несложно. Дольше описывать и рассказывать. Главное – грамотно установить подрозетники. соблюдать правила техники безопасности, быть внимательным и аккуратным. Тогда все обязательно получится!

Принцип получения электроэнергии

Батареи собраны из некоторого количества элементов, в которых энергия солнечного излучения преобразуется в электрическое напряжение. Каждый из упомянутых элементов – это фотодиод, изготовленный из специального полупроводящего материала.

Каждый элемент батареи состоит из двух частей. Обе части – это определенным образом обработанный полупроводниковый материал.

Электроны в полупроводниках расположены в определенных диапазонах по энергии, диапазоны называют зонами. В каждой упомянутой части, как во всяком полупроводнике, существует заполненная зона, проводимости и разделяющая их зона. Если электрон находится в зоне проводимости, он может перемещаться. В заполненной зоне электроны вообще неподвижны. Но, если электрону сообщить добавочную энергию, он перейдет в зону проводимости и сможет перемещаться.

Возможен также переход электронов из заполненной на какой-нибудь уровень в промежуточной зоне. В обоих случаях в заполненной зоне окажется пустой уровень. На этот уровень может перейти другой электрон, оставив свой уровень незаполненным. Последний может занять соседний из этой же зоны, вместо того следующий и т.д.

Таким образом, перемещение зарядов в заполненной зоне приведет к тому, что электроны  тоже могут проводить ток. Такие создающие ток заряды, в отличие от электронов в зоне проводимости, называют дырками, так как при перемещении  в этом случае перемещается дырка – в место, где нет электрона.

А теперь представим себе, что мы соединили друг с другом полупроводники, в одном из которых электрический ток проводят электроны, а в другом – дырки.  Падение солнечных лучей на элемент сгенерирует неравновесные электронно-дырочные пары с образованием тока.

Электрические процессы в такой паре весьма сложны. Поэтому упростим их насколько возможно, для этого положим, что освещается только один из двух полупроводников, скажем для определенности тот, в котором ток проводят свободные электроны. Тогда при соединении двух полупроводников, благодаря тому, что электроны совершают тепловое движение, часть из них перейдет в дырочный полупроводник. Значит, в электронном полупроводнике возникает недостача зарядов, и он благодаря этому получит положительный заряд.

Дырочный же полупроводник, получивший электроны от соседа, очевидно, получит отрицательный заряд.

А для внешней цепи соединение двух таких полупроводников будет как источник напряжения, и будет создавать во внешней цепи ток, который нужен для движения чего-либо.

Это практический пример использования солнечного электричества, который положен в основу и принцип работы солнечных элементов и батарей в целом.

Область применения

В современном мире область применения этих радиодеталей значительно расширена.

Применение разнообразных фоторезисторов, работающих в видимом спектре  довольно обширно. Это могут быть:

  1. Системы автоматических выключателей света.
  2. Счетные устройства.
  3. Датчики обрыва полотна или бумаги.
  4. Датчики проникновения.
  5. В приборах оснащенных экспонометрами. Например, такие элементы могли использоваться в типовых фотоаппаратах-мыльницах.

Сами по себе они только элемент сложных фотоприёмных устройств, в которых помимо фотодетектора может быть входить:

  • интегральный усилитель;
  • микросхема, отвечающая за автоматическую регулировку освещения;
  • схемы цепей питания, дополненные системой охлаждения на элементах Пельтье.

Всё это многообразие элементов для фотодекторов, заключается в небольшой герметичный корпус.

Если эти приборы работают в ИК-диапазоне, их область применения немного другая. Они используются как часть сложных устройств, таких как:

  • датчики обнаружения пламени;
  • системы бесконтактного измерения температуры;
  • системы отслеживания уровня влажности;
  • применяются для обнаружения углекислых газов;
  • в приборах инфракрасных анализаторах газов;
  • используется в датчиках обрыва бумажной ленты в типографии или в бумажной промышленности;
  • в промышленной электронике подключение фоторезистора может применяться для автоматического подсчета  изделий, которые двигаются по транспортерной ленте.

Соответственно, исходя из того что будет управляться таким резистором, рассчитываются и его параметры.

Для примера, как на практике используется этот элемент, посмотрим на схему фотореле, управляющую уличным освещением.

Автоматика уличного освещения

Автоматы, включающие уличное освещение, способны обнаружить наличие/отсутствие солнечного света.

Вот типичная схема реализации подключения фоторезистора для автоматической активации ночного осветительного прибора.

В общих чертах принцип действия схемы.

С наступлением сумерек и в ночное время сопротивление LDR повышается, что вызывает понижение напряжения на переменном резисторе R2. Транзистор VT1 закрыт, а VT2 открывается и таким образом подается напряжение на реле включающее лампу.

Это вполне рабочая схема фотореле, но ее основной недостаток — отсутствие гистерезиса. Это вызывает кратковременное дребезжание реле в сумеречное время, когда присутствует незначительные изменения в освещенности.

Эта электронная деталь помогает отследить степень освещенности окружающей среды.

Датчики наличия других условий

В полиграфической промышленности конструкции на специальном фоторезисторе отслеживают обрыв бумажного рулона. Так же с их помощью можно вести подсчет бумажных листов на конвейере.

Подключение фоторезистора к ардуино

Датчики освещенности, которые могут использовать фоторезисторы могут быть реализованы своими руками на базе плат ардуино.

Самодельный модуль  дает возможность держать под контролем уровень освещенности и прореагировать на его изменение.

Имея на руках такую плату Arduino, легко реализовать такие проекты как:

  • датчик освещения;
  • для включения/выключения реле;
  • запускает двигатели и так далее.

Перед вами типичный пример применения детектора освещенности на базе платы Arduino.

Схема подключения батареи к контроллерам и аккумуляторам

Как устроены солнечные батареи и из чего они состоят, мы выяснили. Теперь поговорим о практическом использовании. Сама по себе солнечная панель малополезна. Она выдает не особо высокое напряжение, которое, кроме того, постоянно меняется. Пасмурно – напряжение одно, солнечно – другое. Набежала тучка – получили скачок.

Далее, солнечная панель выдает постоянный ток, в то время как большинство бытовых приборов работает на переменном. Ну и, конечно, солнечные батареи абсолютно бесполезны ночью. Чтобы получить от такого источника какую-то пользу, необходимо энергию запасти и преобразовать до нужных значений. То есть нужно построить солнечную электростанцию.

В качестве накопителя энергии очень удобно использовать обыкновенные автомобильные аккумуляторы. Они идеально подходят по напряжению и легко подбираются по емкости. Кроме того, что батарея будет запасать энергию, она дополнительно стабилизирует напряжение. Упало оно на панели — потребитель будет получать питание от аккумулятора. Поднялось – панель будет питать потребители и одновременно заряжать АКБ.

Преобразование постоянного напряжения батареи в переменное 220 В несложно сделать при помощи так называемого инвертора (преобразователя). Сегодня таких устройств самой разной мощности и стоимости полные прилавки.

Но нельзя просто взять и подключить панель к аккумулятору. Ведь заряжать АКБ нужно определенным током и нельзя допускать ее перезарядки. Поэтому нам понадобится еще один узел – контроллер заряда АКБ. Он самостоятельно будет выдерживать зарядный ток и отключит АКБ от панели, если она полностью заряжена или панель не в состоянии обеспечить необходимое напряжение.

Купить такой прибор тоже не проблема, причем есть совсем недорогие модели, хотя при желании можно взять устройство с целым набором дополнительных функций: вольтметром, таймером, собственным преобразователем и т. д. Ну и цена, конечно, будет соответствующей. Что касается схемы соединения всех узлов, то она довольно проста.

Особых пояснений она не требует. Напряжение с панели поступает на контроллер, который заряжает аккумулятор и питает низковольтную нагрузку (не все модели). Аккумулятор же, в свою очередь, питает преобразователь, если энергии солнечной панели для этих целей недостаточно.

Фотоэлементы промышленного назначения

На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:

  • высокая надёжность при длительном (до 25—30 лет) ресурсе работы;
  • высокая доступность сырья и возможность организации массового производства;
  • приемлемые с точки зрения сроков окупаемости затрат на создание системы преобразования;
  • минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос), включая ориентацию и стабилизацию станции в целом;
  • удобство техобслуживания.

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.[источник не указан 3015 дней]

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью[источник не указан 3015 дней]. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний, Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.[источник не указан 3015 дней]

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Неисправности и уход за оптическими датчиками

Так же как и оптика зеркальных фотоаппаратов – нужна чистка, аккуратная протирка и проверка механической целостности.

Я для чистки оптики использую салфетки, смоченные в воде с добавлением ничтожного количества нейтрального моющего средства. Например, для посуды. Потом вытираю сухой салфеткой. Главное – чтобы не попал абразив.

Ещё особенность. В оптических датчиках излучающий элемент – как правило, светодиод. Он имеет свой ресурс работы, и со временем интенсивность его излучения падает. Поэтому неудивительно, что раз в несколько лет приходится настраивать чувствительность датчиков, такова селяви…

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий