Волоконно-оптический кабель. какие функции выполняет оптоволокно? типы оптоволоконных кабелей

Пропускная способность оптоволокна

За последние несколько десятков лет пропускная способность волоконно-оптического кабеля значительно увеличилась. При этом разработки по усовершенствованию одной из передовых технологий передачи данных не прекращается даже на минуту. В сущности, скорость передачи сигнала во многом зависит от расстояния между оборудованием, типа волоконного носителя и количества соединительных стыков в магистралях.

К примеру, использованный при построении внутренней сети (между серверами данных) многомодовый оптический кабель на расстоянии приблизительно в 200 метров способен обеспечить скорость до 10 Гбит/с.

Для прокладки внешних коммуникаций, где расстояние между передатчиками может достигать нескольких десятков километров применяется одномодовое оптоволокно. Структура такого кабеля позволяет развивать скорость потока более 10 Гбит/с. Правда, это далеко не предел возможности оптики. С увеличением потребительского спроса возникнет необходимость наращивать мощность оборудования и даже замена техники, позволяющая добиться скорости передачи данных на уровне 160 Гбит/с не способна использовать потенциал носителя в полной мере.

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф, затем — коаксиальный кабель. В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения: для электрических систем это явление затухания сигнала на определённом расстоянии, для сверхвысокочастотных (СВЧ) систем — несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено — оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 году Као и Хокам из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5—10 дБ/км) из-за примесей, которые в них содержались и которые, в принципе, можно было удалить.

Существовало две глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая — с появлением высококачественных оптических кабелей в 1970 году. Это была разработка Corning Incorporated (англ.). Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время были разработаны достаточно компактные полупроводниковые GaAs-лазеры.

После интенсивных исследований в период с 1975 по 1980 год появилась первая коммерческая волоконно-оптическая система, оперировавшая светом с длиной волны 0,8 мкм и использовавшая полупроводниковый лазер на основе арсенида галлия (GaAs). Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями — 10 км.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение волоконно-оптических систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP-лазеров. Однако такие системы всё ещё были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы работали на скорости до 1,7 Гбит/с при расстоянии между повторителями 50 км.

Прокладка первой в мире трансокеанской волоконно-оптической линии связи была завершена в 1988 году (между Японией и США), её длина составила около 10 тысяч километров. Первый трансатлантический телефонный оптический кабель (TAT-8) был введён в эксплуатацию также в 1988 году. В его основе лежала оптимизированная Э. Дезюрвиром (E.Desurvire) технология лазерного усиления. TAT-8 разрабатывался как первый подводный волоконно-оптический кабель между Соединёнными Штатами и Европой.

Разработка систем волнового мультиплексирования позволила в несколько раз увеличить скорость передачи данных по одному волокну, и к 2003 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с). В 2009 году лаборатории Белла посредством мультиплексирования 155 каналов по 100 Гбит/с удалось передать данные со скоростью 15,5 Тбит/с на расстояние 7000 км. В 2013 году ученые из Bell протестировали технологию шумоподавления, которая позволяет передать 400 Гб/сек по оптоволокну на 12 800 км без повторителей сигнала.

Конструкция волоконно-оптического кабеля

Конструкция ВОК изменяется в зависимости от его типа и назначения при общем сходстве отдельных конструктивных элементов. Познакомимся с особенностями кабельной конструкции на примере оптоволоконного кабеля, изображенного на рисунке.

Волоконно-оптический кабель в разрезе

В центре конструкции виден силовой элемент из стеклопластикового прутка, предназначенный для демпфирования нагрузок, создаваемых при монтаже и эксплуатации. Волокна расположены внутри оптических модулей, оберегающих их от внешнего воздействия. Модули представляют собой пластиковые трубки, имеющие оптимальный диаметр для группирования нужного количества ОВ.

В состав ВОК входят один или несколько модулей, что зависит от общего числа волокон. Модульное группирование оптических волокон и их цветовая маркировка намного облегчают идентификацию каждого конкретного оптоволокна при монтаже муфт и расшивке оптоволоконного кабеля на кроссе.

Оптические модули покрыты водоотталкивающим гелем, предохраняющим от проникновения влаги. Бандажная лента из полиэтилена фиксирует оптические модули и не дает вытечь гелевому наполнителю.

Внутренняя полиэтиленовая оболочка является буферным слоем, разделяющим оптические модули и армирующую броню. В данном примере бронирование выполнено стальной оцинкованной проволокой, надежно защищающей от грызунов и экстремальных нагрузок.

Важнейшим элементом защиты является внешняя оболочка из негорючего высокоплотного полиэтилена. От надежности наружного покрытия зависит длительность безотказного функционирования оптоволоконного кабеля, что диктует строгие требования к технологии его производства.

3.1. Требования к излучателям

Источник оптического излучения, излучатель – прибор, преобразующий электрическую энергию возбуждения в энергию оптического излучения заданного спектрального состава и пространственного распределения. Источники оптического излучения должны отвечать определенным требованиям для успешного их применения в системах связи.

  1. Высокая эффективность преобразования энергии возбуждения в энергию излучения.
  2. Узкая спектральная полоса излучения.
  3. Направленность излучения. Концентрация излучения на малой площади, характеризуемая показателем интенсивности (3.1)

[Вт/см 2] (3.1)

где n – показатель преломления, с – скорость света, Е – напряженность светового поля [В/см].

  1. Быстродействие при модуляции, т.е. быстрое возникновение и гашение излучения.
  2. Совместимость с приемниками излучения и физическими средами передачи.
  3. Когерентность излучения.
  4. Миниатюрность и жесткость исполнения.
  5. Высокая технологичность и низкая стоимость.
  6. Длительный срок службы (не менее 10 5 часов)
  7. Высокая устойчивость к различным перегрузкам (механическим, тепловым, радиационным).
  8. Возможность перестройки частоты излучения.

Указанным требованиям в большой степени отвечают некоторые типы излучателей:

  1. светоизлучающие полупроводниковые диоды (СИД);
  2. инжекционные полупроводниковые лазерные диоды (ППЛ);
  3. твердотельные лазеры;
  4. волоконные лазеры.

В отдельных случаях применение могут найти малогабаритные газовые лазеры.Светоизлучающий прибор является центральным прибором в составе передающего оптического модуля.

1.1. Характеристика диапазона электромагнитных волн для оптической связи

Известный спектр электромагнитных волн простирается от постоянного электрического тока и низкочастотных колебаний до рентгеновских и гамма-излучений. На рисунке 1.1 представлены все участки этого спектра и определено местоположение диапазона, который называется оптическим.

В оптическом диапазоне видимый свет занимает участок спектра от 380 нм (фиолетовый) до 780 нм (красный) и граничит со стороны более коротких волн с ультрафиолетовым излучением, а со стороны более длинных волн – с инфракрасным излучением. Наибольшее применение для оптической связи имеет диапазон, который называют ближней инфракрасной зоной (0.8 ¸ 1.675 мкм). Его использование обусловлено двумя факторами: по шкале энергий этот диапазон соответствует ширине запрещенной зоны ряда полупроводников, т.е. кванты такого излучения могут порождаться и поглощаться с ионизацией лишь валентных электронов; этот диапазон отличается наибольшей прозрачностью в таких средах распространения волн как стекловолокно и воздушная атмосфера. Следовательно, существует возможность изготовления эффективных полупроводниковых приборов и согласование их со средами передачи.

Волнам оптического излучения присущи не только волновые явления (дифракция, интерференция), но и квантовые или корпускулярные. Хорошо известна связь параметров световой волны с энергией кванта (фотона):

(1.1)

где h – постоянная Планка 4,1х10– 5 эВ или 6,626х10– 34 Джс, f – линейная частота колебаний. Учитывая связь длины световой волны и частоты,

(1.2)

можно определить энергию фотона:

(1.3)

где с – скорость света в вакууме, округляемая до величины 3х10 8 м/с.

Рисунок 1.1. Спектр электромагнитных волн

Произведение h×c имеет постоянное значение, например, часто употребляемое 1.24эВ×мкм.

Физика волновых оптических процессов включает изучение интерференции, дифракции и поляризации, использование законов геометрической оптики, электро- и магнитооптических эффектов. Квантово-механическая природа оптического излучения наиболее отчетливо проявляется в тепловой генерации и различных видах люминесценции, в фотоэффекте, процессах взаимодействия излучения с веществом, явлениях нелинейной оптики .

Ниже приведен пример оценки полосы частот оптического диапазона 0.8 ¸ 1.6 мкм.

Граничные частоты диапазона могут быть вычислены следующим образом:

f1 = c / l 1, f2 = c / l 2 ,

где с= 3 х 10 8 м/с, l 1 = 0,8 х 10 – 6 м, l 2 = 1,6 х 10 – 6 м.

Полоса пропускания указанного диапазона составит

D f = f1 – f2 = 3.75 х 1014 – 1,875 х 1014 Гц,

что соответствует 187,5 ТГц.

Необходимое оборудование для передачи информации по оптоволоконному кабелю

На сегодняшний день оптоволоконные сети получили широкое распространение среди компаний, предоставляющих своим абонентам доступ к интернету. При этом, для осуществления передачи данных, если не считать промежуточных муфт и прочего сопутствующего оборудования, используется следующая техника:

со стороны провайдера: — специальное оборудование DLC, известное также под названием мультиплексор. Оно позволяет производить передачу данных по волоконно-оптическому кабелю на значительные расстояния с постоянно поддерживаемой высокой скоростью.

со стороны абонента: — роутер ONT, который является оконечным клиентским оборудованием и позволяет обеспечить доступ к интернету через оптоволоконную сеть. Позволяет осуществлять доступ на скорости до 2.5 Гбит/с.

По назначению

Специалисты выделяют несколько типов волоконно-оптических кабелей по назначению. Встречается аналогичное разделение по способу монтажа. В принципе, это одно и тоже, что нужно учитывать при выборе кабельной продукции. Основным отличием ВОК разных типов являются их конструктивные особенности, например, параметры внешней оболочки, наличие и материал брони/силовых элементов, огнестойкость, уровень защиты от влаги.

Для монтажа внутри зданий

Волоконно-оптические кабели внутри зданий монтируются в пространстве кабельных лотков и кабель-каналов от оптических кроссов до мест подключения абонентских устройств. Наружную оболочку ВОК производят из материалов с пониженным уровнем дымовыделения, не распространяющих горение, чтобы соблюсти требования противопожарной безопасности. Броня и силовые элементы, как правило, отсутствуют. Защитные функции выполняет армирование кевларовыми нитями.

Кабели характеризуются минимальным весом, небольшим радиусом изгиба. Количество ОВ может варьироваться от 2 до 24. В случае прокладки по помещениям с наличием агрессивной, пожароопасной или взрывоопасной среды применяются специализированные оптоволоконные кабели.

Для прокладки в канализации

Для прокладки в канализации и коллекторных сооружениях востребованы волоконно-оптические кабели с броней, выдерживающие большой уровень растягивающих и раздавливающих нагрузок. Виды бронирования:

  • ленточное;
  • проволочное — с 1 или 2 повивами.

Чаще применяется ленточное бронирование, которое выполняется в виде гладкой или гофрированной трубки из стали 0,1 — 0,2 мм. Гофрированная лента эффективнее противостоит грызунам и повышает гибкость кабельного изделия. Массивная проволочная броня выбирается в случае особо сложных условий окружающей среды.

Особое внимание уделяется кабельной оболочке, изготавливаемой из негорючего полиэтилена высокой плотности, выдерживающего значительные перепады температур. Оптические модули обязательно защищаются слоем водоотталкивающего геля

Такое решение отлично зарекомендовало себя в условиях влажной атмосферы канализации и коллекторов.

Для укладки в грунт

Укладка в грунт предполагает эксплуатацию волоконно-оптического кабеля в крайне агрессивной внешней среде и риск критических механических воздействий. Нередки случаи повреждений ВОК в результате работы тяжелой строительной техники, ошибочно организованной в охранной зоне на трассе оптоволоконной линии связи.

Для минимизации ущерба оптическим волокнам применяют кабели с мощной проволочной броней, имеющей один или два повива, очень редко с ленточной броней. Такой выбор становится понятен, если учитывать, что проволочное бронирование обеспечивает:

  • максимальную нагрузку при растяжении — до 80 000 Ньютон/100 мм;
  • допустимое раздавливающее усилие — до 4 000 Ньютон/1 см.

У ленточного бронирования эти показатели гораздо ниже: 2 700 Ньютон/100 мм и 500 Ньютон/1 см соответственно.

Сохранность ОВ от проникновения влаги, особенно в период дождей, обеспечивается надежной изоляцией оптических модулей гидрофобным гелеобразным наполнителем

Классификация по типу нагрузки

По этому типу оптоволокно можно разделить на 4 большие группы:

  1. Магистральная сеть. Для прокладки сетей на значительные расстояния используется одномодовый кабель со смещенной дисперсией. Его также можно прокладывать в грунте различного типа.
  2. Городские кабели. Для организации сети внутри населенных пунктов используют градиентные волокна, они способны поддерживать устойчивую связь на нескольких волновых длинах. Протяженность такой сети может достигать 100 км.
  3. Объектовые. Используются для прокладки оптоволоконного кабелявнутри сети предприятий или домов, активно применяются для организации телефонных сетей.
  4. Монтажные ВОЛС. Используются для настройки и связи оборудования в ограниченном пространстве.

4.3. Дополнительные кабельные затухания

Дополнительное затухание, обусловленное кабельными потерями (αк), состоит из суммы по крайней мере семи видов парциальных коэффициентов затухания

,                                      (4.3.1)

где

α’1 –    возникает вследствие приложения к ОВ термомеханических воздействий в процессе изготовления кабеля;

α’2 –    вследствие температурной зависимости коэффициента преломления материала ОВ;

α’3 –    вызывается микроизгибами ОВ;

α’4 –    возникает вследствие нарушения прямолинейности ОВ (скрутка);

α’5 –    возникает вследствие кручения ОВ относительно его оси (осевые напряжения скручивания);

α’6 –    возникает вследствие неравномерности покрытия ОВ;

α’7 –    возникает вследствие потерь в защитной оболочке ОВ.

Таким образом, дополнительные потери определяются в основном процессами рассеяния энергии на неоднородностях, возникающих вследствие перечисленных влияний, и частично увеличением потерь на поглощение энергии. Причинами увеличения потерь на поглощение являются остаточные осевые и поперечные напряжения в ОВ, могущие возникнуть при изготовлении кабеля.

В ряде случаев микроизгибы могут существенно влиять на прирост αк. Значение потерь на одном микроизгибе может изменяться в пределах (0,01÷0,1) дБ. Приращение затухания от микроизгибов α’3 зависит от мелких локальных нарушений прямолинейности ОВ, характеризуемых смещением оси ОВ в поперечных направлениях на участке микроизгиба. Основными причинами появления микроизгибов являются локальные неосесимметричные механические усилия различного происхождения, приложенные  к очень малым участкам ОВ. К микроизгибам следует отнести такие поперечные деформации ОВ, для которых максимальное смещение оси ОВ соизмеримо с диаметром сердцевины волокна. Особенностями микроизгибов является то, что они, как правило, многочисленны, расстояние между соседними микроизгибами существенно больше их размера. Общий вклад потерь, создаваемых микроизгибами, может быть значителен. Вследствие микроизгиба происходит ограничение апертурного угла излучения, распространяющегося по ОВ, и часть энергии излучается из ОВ. Зависимость приращения затухания от микроизгиба α’3 можно определить из выражения :

                                    ,                              (4.3.2)

где

k3 = 0,9 ÷ 1,0;

Nи –    число неоднородностей в виде выпуклостей со средней высотой уи на единицу длины;

а –      радиус сердцевины;

b –      диаметр оптической оболочки;

Δ –      относительное значение показателя преломления;

n1 и n2 –       показатели преломления сердцевины и оболочки;

E и Ec –      модули Юнга оболочки и сердцевины ОВ.

1.2. Структура волоконно-оптической системы передачи

По существу, ВОСП содержат функциональные узлы, присущие любым радиотехническим системам связи. Более того, при формировании сигналов, в принципе, возможно использование тех же разнообразных способов кодирования и видов модуляции, которые известны в радиотехническом диапазоне. Однако ряд особенностей оптического диапазона и используемого в нем элементного базиса накладывают свои ограничения на реализационные возможности ВОСП или приводят к техническим решениям, отличным от традиционных в технике связи.

Волоконно-оптической системой передачи называется совокупность активных и пассивных устройств, предназначаемых для передачи информации на расстояние по оптическим волокнам (ОВ) с помощью оптических волн и сигналов. Другими словами, ВОСП – это совокупность оптических устройств и оптических линий передачи для создания, обработки и передачи оптических сигналов. При этом оптическим сигналом служит модулированное оптическое излучение лазера или светодиода.

Рисунок 1.2 – Структурная схема волоконно-оптической системы передач

На рисунке 1.2 представлены основные компоненты такой системы.

Передатчик преобразует электрические сигналы в световые. Данное преобразование выполняет источник, представляющий собой либо светоизлучающий, либо лазерный диод. Электронная схема управления преобразует входной сигнал в сигнал определенной формы, необходимой для управления источником.

Волоконно-оптический кабель – среда, по которой распространяется световой сигнал. Кабель состоит из  оптического волокна и защитных оболочек.

Приемник предназначен для приема светового сигнала и его обратного преобразования в электрические сигналы. Его основными частями являются оптический детектор, непосредственно выполняющий функцию преобразования сигнала.

Соединители (коннекторы) предназначены для подключения волокна к источнику, оптическому детектору и для соединения волокон между собой.

В настоящее время при организации связи по волоконно-оптическим линиям связи  предпочтение отдается цифровым системам передачи (ЦСП) с импульсно-кодовой модуляцией (ИКМ), что обусловлено помимо общих преимуществ ЦСП по сравнению с аналоговыми системами передачи (АСП) особенностью работы и построения ВОСП. Это связано  с высоким уровнем шумов фотодиодов, которые используются в качестве приемников оптического излучения. Для получения необходимого качества передачи информации с помощью АСП требуются специальные методы приема и обработки аналоговых оптических сигналов. ЦСП обеспечивает требуемое качество передачи информации при отношении сигнал-помеха на 30…40 дБм меньше, чем АСП. Поэтому реализация ВОСП с использованием ЦСП намного проще по сравнению с АСП.

В ВОСП используется приграничный к инфракрасному диапазон длин волн от 800 до 1600 нм, при этом предпочтительными являются длины волн 850, 1300 и  1550 нм.

7.2. Полупроводниковые оптические усилители. Конструкции, принцип действия, основные характеристики

Полупроводниковые усилители строятся в основном по двум схемам: усилители бегущей волны, в которых эффект оптического усиления наблюдается при распространении входного излучения в инверсной среде активного слоя с просветленными, т.е. не отражающими торцами (рисунок 7.2), и резонансные усилители, в которых эффект усиления и отсутствие лазерной генерации обеспечивается за счет того, что уровень постоянного тока накачки в рабочем режиме выбирается близким, но все-таки ниже порогового значения (рисунок 7.3).

Усилители бегущей волны (УБВ) могут быть реализованы с достаточно большим коэффициентом усиления (около 30 дБ при ) широкой полосой (около 5 ¸ 10 ТГц). Для этого необходимо подавление возможных отражений фотонов от торцов (отражение менее 0,1%). Это достигается в конструкциях усилителей, изображенных на рисунке 7.4.

Резонансный усилитель Ф–П имеет слишком узкую полосу усиления на уровне -3 дБ от максимального (менее 10 ГГц) и мало пригоден для оптических систем передачи. Соотношение полос частот усиления для УБВ и усилителя Ф–П приведено на рисунке 7.5.

Рисунок 7.2. Усилитель бегущей волны и его частотная характеристика

Рисунок 7.3. Усилитель резонансного типа и его частотная характеристика

Рисунок 7.4. Конструкции усилителей бегущей волны с активным слоем и подавлением отраженных лучей

Пригодные для оптических систем передачи усилители бегущей волны имеют разные коэффициенты усиления для продольных и поперечных мод (мод ТЕ и ТМ) (рисунок 7.6). Поэтому усилители выполняются из двух кристаллов с ортогональным расположением активных усиливающих слоев.

Рисунок 7.5. Спектральные характеристики усиления

Рисунок 7.6. Усиление для продольных и поперечных мод в УБВ

В таблице 7.1 приведены характеристики некоторых полупроводниковых усилителей .

Таблица 7.1. Характеристики полупроводниковых усилителей

Пример конструкции полупроводникового усилителя, совмещенного с лазером передатчика, приведен на рисунке 7.7.

Рисунок 7.7. Схема структуры с объединенным РОС — лазером и оптическим усилителем

Конструкция выполнена на одной подложке. Лазер отделен от усилителя изолирующим слоем FeInP, который прозрачен для оптического излучения .

9.2. Эффективность соединения источников излучения со ступенчатым и градиентным многомодовым волокном

Как известно, входная линейная угловая апертура q А и сплошная входная угловая апертура Q мах (предполагая, что q А имеет небольшое значение) в ступенчатых волокнах определяются выражениями :

sinq А;                           (9.2.1)

,                                   (9.2.2)

где n1 и n2 – показатели преломления сердцевины и оболочки волокна;

NA – цифровая апертура.

Для градиентных волокон данные выражения имеют вид:

sinq А ;                   (9.2.3)

,                        (9.2.4)

где n1(r) – показатель преломления сердцевины волокна; n2 – показатель преломления оболочки; NAl – локальная цифровая апертура, а при параболическом профиле:

n(r) ;                    (9.2.5)

.                           (9.2.6)

Рассмотрим эффективность ввода в многомодовое оптическое волокно излучения суперлюминесцентного SLED диода, имеющего характеристики ламбертовского источника

 ,                                   (9.2.7)

где  — нормальное к излучающей поверхности (равномерное) излучение источника;

 — радиус источника.

В этом случае значение мощности  на локальном участке торца равно

,                         (9.2.8)

а значение общей мощности, введенной в волокно, без учета отражений будет определяться выражением

                (9.2.9)

где  — радиус сердцевины  или радиус источника  причем выбирается тот, который меньше.

Имея значения  и , можно определить эффективность соединения SLED с многомодовым волокном, которая в общем случае равна

.                                       (9.2.10)

Для соединения SLED со ступенчатым многомодовым волокном данное отношение примет вид  — если радиус источника меньше радиуса сердцевины;  — если радиус источника больше радиуса сердцевины.

С типовым показателем  для ступенчатого волокна соединение встык между SLED и этим волокном дает максимальную эффективность соединения, равную 0,3×0,3×100%=9%.

Аналогично эффективность соединения SLED с градиентным волокном равна

 — если радиус источника £ радиуса сердцевины,

 — если радиус источника > радиуса сердцевины.

Как и ожидалась, в этом случае в волокно может быть введено меньшее количество мощности, причем, если диаметр равен диаметру сердцевины волокна, может быть достигнуто только 50% эффективности ввода в ступенчатое волокно, в противном случае уровень введенной мощности будет и того меньше. Следует подчеркнуть, что рассмотренный режим согласования вызывает возбуждение в волокне всех доступных мод.

Полупроводниковые диоды с торцевой излучающей поверхностью ELED и лазерные диоды LD имеют значительно меньше отклонение луча, что приводит к более высокой интенсивности излучения, и могут рассматриваться по отношению к сердцевине волокна как точечные источники излучения ламбертовского типа. Характеристики луча таких источников аппроксимируются функцией косинуса в степени . Принимая данные допущения, общая мощность излучения таких источников может быть представлена в виде

.                              (9.2.11)

При этом значение мощности, введенной в ступенчатое или градиентное многомодовое волокна, можно определить решением интеграла с верхней границей , тогда

.                     (9.2.12)

Отсюда эффективность ELED и LD со ступенчатым и градиентным многомодовыми волокнами равна

.                          (9.2.13)

Здесь, помимо , расходимость луча источника определяет параметр , который для ламбертовскоо источника равен 1.

Очевидно, что точечные источники способны объединять в волокне значительно большее количество мощности, а дальнейшее усовершенствование эффективности соединения возможно при помощи линз, концентрирующих луч на торцевой поверхности волокна.

Медицинское оборудование

Еще одна область, в которой активно применяется оптическое волокно, – это медицинское оборудование. Изолирующие свойства оптического волокна обеспечивают защиту пациента, персонала и электроники от высоковольтной части аппаратуры. В качестве примера можно привести рентгеновский аппарат. Для генерации излучения к рентгеновской трубке подводится высокое напряжение. Оптоволокно обеспечивает гальваническую развязку между источником высокого напряжения и низковольтным управляющим оборудованием. При этом также устраняется влияние электромагнитных помех, возникающих при переключении высоких токов и напряжений.

Компоненты Versatile Link от Broadcom Limited

Конечно, невозможно перечислить всех возможных промышленных применений оптического волокна. Однако эта область телекоммуникаций активно развивается как во всем мире, так и в нашей стране.

Для реализации этих и других подобных систем передачи информации выпускаются индустриальные волоконно-оптические компоненты, отвечающие жестким условиям промышленности. Большую популярность среди разработчиков заслужили компоненты линейки Versatile Link, выпускаемые компанией Broadcom Limited (ООО «ЭФО» является официальным дистрибьютором Broadcom). Эта линейка компонентов предназначена для работы с пластиковым оптическим волокном и включает дискретные оптические передатчики и приемники, коннекторы, адаптеры (розетки) и POF патч-корды. Компоненты Versatile Link отличаются надежностью, экономичностью, а также простотой эксплуатации, благодаря чему могут использоваться практически в любых сферах промышленности.
В нашей следующей статье мы сделаем подробный обзор этой линейки компонентов. С ассортиментом продукции Versatile Link Вы можете ознакомиться на сайте компании «ЭФО», посвященном волоконно-оптическим компонентам – InFiber.ru:

  • передатчики
  • приемники
  • коннекторы
  • адаптеры
  • кабель POF
  • отладочные платы
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий