Виды и законы радиоактивного излучения

Таблетки от радиации?[править]

Всем, игравшим в Fallout, знакомы Рад-Х и Рад-Эвей (Антирадин), первый повышает устойчивость к радиации, а второй выводит ее из организма. А фанаты Сталкера непременно припомнят водку «Казаки» со свойствами, аналогичными Рад-Эвею. Существуют ли такие препараты в реальности? Да, существуют.

  • Радиопротекторы — да, Рад-Х совершенно реален. Приняв шесть таблеток цистамина (найти его можно, например, в старых советских оранжевых аптечках ГО), можно повысить свою устойчивость к радиации в полтора-два раза, а более современный препарат индралин (он же Б-190) еще более эффективен. Принцип действия этих препаратов в том, что они являются сильными восстановителями, которые немедленно восстанавливают порождаемые радиацией свободные радикалы до безопасных нейтральных молекул.
  • Препараты против радионуклидов. Если радиопротекторы защищают от проникающей радиации, то эти лекарства не дадут прописаться в вашем организме случайно проглоченным или вдохнутым радиоизотопам и помогут их вывести. Самый известный из них — йодистый калий, который защищает от радиоактивного йода. Также известна берлинская лазурь, которая способствует выведению цезия-137.
  • ДНК-активные препараты. Экспериментальные лекарства, ни одно из которых пока не вышло на стадию производства, но испытания очень обнадеживают. Эти препараты, самые известные из которых DBIBB и Ex-Rad, ликвидируют повреждения ДНК, нанесенные проникающей радиацией. По сути, это самый настоящий Рад-Эвей, который можно принять после облучения и забыть о нем навсегда.
  • А что же спиртное? Эффект от него есть, но небольшой. Сам по себе этиловый спирт после попадания в организм превращается в уксусный альдегид — сильный восстановитель, который действует как радиопротектор. Проблема в том, что уксусный альдегид — еще и яд, являющийся главной причиной тяжелого похмелья, так что вред для организма тут превосходит пользу. В красном вине содержатся менее опасные натуральные радиопротекторы, например, ресвератрол и кверцетин. Но, опять же, эффективность сильно ниже, чем у цистамина. Выведению специфических радионуклидов ни водка, ни вино не способствуют — разве что стимулируют общий выделительный процесс, чем в принципе могут помочь. В целом — спиртное как радиопротектор неэффективно, и польза от него ненамного превышает вред.

Что такое радиация

Всем известно, что радиация очень опасна и лучше держаться подальше от радиоактивного излучения. С этим трудно поспорить, хотя в реальности мы постоянно подвержены влиянию радиации, где бы не находились. В земле залегает довольно большое количество радиоактивной руды, а из космоса на Землю постоянно прилетают заряженные частицы.

Кратко говоря, радиация это самопроизвольное испускание элементарных частиц. От атомов радиоактивного вещества отделяются протоны и нейтроны,  «улетая» во внешнюю среду. Ядро атома при этом постепенно изменяется, превращаясь в другой химический элемент. Когда все нестабильные частицы отделяются от ядра, атом перестает быть радиоактивным. Например, торий-232 в конце своего радиоактивного распада превращается в стабильный свинец.

Наука выделяет 3 основных вида радиоактивного излучения

Альфа излучение(α) — поток альфа-частиц, положительно заряженных. Они сравнительно большие по размеру и плохо проходят даже через одежду или бумагу.

Бета излучение(β) — поток бета-частиц, негативно заряженных. Они довольно малы,  легко проходят через одежду и проникают внутрь клеток кожи, что наносит большой вред здоровью. Но бета-частицы не проходят через плотные материалы, такие как алюминий.

Гамма излучение(γ) — это высокочастотная электромагнитная радиация. Гамма-лучи не имеют заряда, но содержат очень много энергии. Скопление гамма-частиц излучает яркое свечение. Гамма-частицы проходят даже через плотные материалы, что делает их очень опасными для живых существ. Их останавливают только самые плотные материалы, например, свинец.

Все эти виды излучения так или иначе присутствуют в любой точке планеты. Они не представляют опасности в малых дозах, но при высокой концентрации могут причинить очень серьезный ущерб.

Космическое излучение

Космическое излучение исходит от чрезвычайно энергетических частиц Солнца и звезд, которые попадают в атмосферу Земли. То есть указанные небесные тела можно назвать источниками радиоактивного излучения. Некоторые частицы попадают на землю, а другие взаимодействуют с атмосферой, создавая различные виды излучения. Уровни увеличиваются по мере приближения к радиоактивному объекту, поэтому количество космического излучения обычно увеличивается соразмерно набору высоты. Чем больше показатель высоты, тем выше доза. Вот почему те, кто живет в Денвере, штат Колорадо (высота 5 280 футов), получают более высокую годовую дозу радиации от космического излучения, чем кто-либо, обитающий на уровне моря (высота 0 футов).

Добыча урана в России остается спорной и «горячей» темой, ведь эта работа крайне опасна. Естественно, что уран и торий, найденные в земле, называются первичными радионуклидами и являются источником земного излучения. Следовые количества урана, тория и продуктов их распада можно найти повсюду. Узнайте больше о радиоактивном распаде. Уровни земной радиации варьируются в зависимости от местоположения, но в областях с более высокими концентрациями урана и тория в поверхностных почвах обычно наблюдаются более высокие уровни доз. Потому люди, занимающиеся добычей урана в России, подвержены большому риску.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество — это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Норма радиоактивного излучения

Институт медико-биологических проблем формирования здоровья в Москве пришел к выводу, что продолжительность жизни на 20% зависит от состояния здоровья, еще на 20% от окружающей среды, на 10% от уровня медобслуживания и на 50% от образа жизни, режима питания и отдыха. Радиоактивное излучение составляет 5% экологическим проблем цивилизации.

Какие бывают нормы радиоактивности?

Радиоактивное облучение техногенного характера совместно с естественными источниками не должно превышать индивидуальную предельно допустимую дозу (ИПДД).

НРБ – нормы радиационной безопасности, выделяют 2 категории граждан, подвергающихся воздействию радиации.

Категория А – профессиональные сотрудники, которые работают с источниками ионизирующих излучений.

Категория B – часть населения, вынужденная проживать или работать в местах, где могут находиться радиоактивные вещества.

При ликвидации аварий превышение дозовых пределов допускается только ради спасения жизни людей и отсутствия возможности принять меры защиты.

Участвовать в спасательных мероприятиях могут только мужчины старше 30 лет, при их добровольном согласии в письменном виде, после полного информирования о возможных последствиях для здоровья.

Солнечная постоянная

Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды – калории и ватты, деленные на единицу времени. Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает. До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.

Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий – от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, – это протоны, но иногда могут быть и электроны (если выброс энергии был большим).

Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.

Понятие и виды излучения

Как известно в 11 классе, внутренняя энергия вещества может передаваться с помощью контактной теплопередачи, конвекции и излучения.

Рис. 1. Теплопередача, конвекция, излучение.

Рассмотрим излучение — передачу энергии вещества, которая происходит на расстоянии. В зависимости от массы покоя носителя энергии, излучение можно разделить на:

  • излучение безмассовых фотонов;
  • радиоактивное излучение частиц, имеющих массу (альфа, бета, гамма, нейтронное).

Фотонное излучение

Фотоны можно считать чистыми квантами энергии. Они не имеют массы покоя, а это значит, что покоящихся фотонов не бывает: они всегда движутся со скоростью света и несут энергию. Поскольку свойства фотонов сильно меняются в зависимости от их частоты, этот вид излучения делится на:

  • радиоизлучение;
  • ИК-излучение;
  • видимое излучение;
  • УФ-излучение;
  • рентгеновское излучение;
  • γ-излучение.

От начала к концу этого списка у фотонов увеличивается частота и энергия. При этом уменьшаются волновые проявления и нарастают корпускулярные. Если диапазон радиоизлучения демонстрирует практически только свойства волны, то γ-излучение имеет такую малую длину волны, что волновые свойства у него обнаружить очень трудно.

Вследствие этого от начала к концу списка у фотонного излучения уменьшается способность огибания препятствий, но при этом увеличивается проникающая способность.

С большинством из этих видов излучения человек часто имеет дело и находит для них применение в жизни, в первую очередь в качестве источников света.

Рис. 2. Шкала электромагнитных излучений.

Радиоактивные виды излучения

С открытием радиоактивности выяснилось, что излучение может осуществляться частицами, имеющими массу. В первую очередь это α- и β- излучения, сопровождающие радиоактивный распад многих тяжелых элементов (при этом также излучаются и γ-кванты).

α-излучение — это поток тяжелых частиц, имеющих атомный вес 4 и заряд 2. То есть фактически каждая α-частица представляет собой ядро гелия.

Система из двух протонов и двух нейтронов оказывается очень устойчивой энергетически, поэтому при распаде тяжелых ядер наиболее «выгодно» отщепление не отдельных протонов и нейтронов, а вот таких систем. Именно поэтому α-радиоактивными являются практически все тяжелые ядра с массовым числом более 208.

β-излучение — это поток быстрых электронов. Такое излучение характерно для ядер с большим избытком нейтронов.

Избыток нейтронов позволяет ядрам быть устойчивыми к кулоновскому отталкиванию, поскольку нейтроны участвуют в сильном взаимодействии, скрепляющем ядро, при этом не участвуют в электромагнитном взаимодействии, разрывающим его. Однако нейтроны являются стабильными только в связке с протонами. Свободный нейтрон нестабилен и распадается на протон, электрон и антинейтрино. Так и происходит в ядрах, в которых существует большой избыток нейтронов.

Также существует и нейтронное излучение. Оно сопровождает спонтанный распад тяжелых ядер, поскольку в тяжелых ядрах имеется избыток нейтронов, который становится «лишним», для осколков. Однако, такое радиоактивное излучение — достаточно редкий процесс.

Можно составить таблицу видов излучений:

Рис. 3. Таблица видов излучений.

Что мы узнали?

Излучение — это передача энергии вещества, которая происходит на расстоянии. Наиболее часто оно осуществляется безмассовыми фотонами — квантами энергии. Существует также и радиоактивное излучение, осуществляющееся частицами, имеющими массу покоя.

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Что такое радиация?

Что бы ответить на этот вопрос, понять его физический смысл, оценить степень воздействия на нашу жизнь, лучше начать с основы — строения вещества. Это даст общие представления о природе радиации, причинах ее появления.

В других разделах данного ресурса рассматриваются все аспекты радиации, начиная с физической сущности процесса, рассмотрением биологического действия радиации на живые организмы, заканчивая социальным влиянием радиации на общество.

Нужно ли вообще человеку знать о данном явлении, вникать в суть процесса, разбираться с его воздействием на нашу жизнь, на наше здоровье или просто довериться заверениям официальных структур, что радиация «безвредна», «естественна» и «безопасна»? Каждый сам для себя отвечает на данный вопрос. Основное коварство этого явления — это невозможность его ощутить нашими органами чувств, пока не станет слишком поздно. Радиация невидима, неощутима, не имеет запаха и вкуса. За последний век, индустриальное развитие общества, привело к появлению в массовом количестве искусственных источников радиации, сделав радиацию частью нашей повседневной жизни.

Человек за последние 100 лет, в массовом количестве начал добывать, перерабатывать, выделять и создавать новые вещества, которые обладают радиоактивными свойствами. Повсеместно от промышленности, медицины, энергетики до атомного оружия, стали применяться радиоактивные материалы, принося с неоспоримой ценностью и пользой для общества, все сопутствующие радиации опасности.

Возможно, стоит уделить время и узнать немного больше о процессе, который за последний век изменил жизнь человека, принеся ощутимые преимущества нашему обществу, дав ему мощный толчок развития, но к сожалению, ставший причиной гибели более миллиарда человек за последние 70 лет (по расчетам известного американского эпидемиолога и радиоэколога Розалии Бертелл, опубликованным в журнале «The Ecologist» (1999, vol. 29, № 7, p. 408 — 411)). Это больше, чем погибло во всех войнах, которые вел человек, убивая себе подобных. Уже не так много людей, чьей судьбы, его близких или знакомых, в разной степени не коснулась тема такой страшной болезни как — рак. Основной из главных и основных причин, провоцирующих начало развития этой болезни в организме человека — это воздействие радиоактивных изотопов на ткани и органы человека. Конечно есть и другие причины, например, курение или воздействие химических веществ, но это не уменьшает степень влияния радиации в развитии раковых заболеваний самой различной локализации.

Радиация прочно вошла в нашу жизнь, стала ее частью, и понимать, что это такое, какие опасности в себе таит, как предостеречь себя и своих близких от смертельно опасного биологического действия радиации — стоит знать.

Цель данного ресурса, не в коем случае не напугать, не посеять панику или развить фобии.

Цель данного ресурса — это предоставить доступным языком объективную информацию о радиации, человеку, которому не безразлично его здоровье и здоровье его близких. Понимая суть процесса, все его аспекты, общество в целом может выбирать путь своего развития и каждый из нас может внести свой вклад.

Статьи о радиации на сайте

Строение вещества

Строение атома. Что такое радиация, причины возникновения радиации. Распад радиоактивных веществ. Что такое протоны, нейтроны, электроны, изотопы, нуклиды.

Подробнее

Виды радиоактивных излучений

Виды радиации, состав излучения и основные характеристики. Действие радиации на вещество.

Подробнее

Дозиметры

Измерение радиации. Виды дозиметров, их устройство и рекомендации по выбору прибора измерения.

Подробнее

Источники радиоактивных излучений

Источники радиации. Естественные источники излучения, природный радиационный фон. Космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.

Подробнее

Единицы измерения и дозы радиации

Единицы измерения и дозы радиации

Подробнее

Нормативные документы по радиации

Нормативные документы по радиации

Подробнее

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Космическое излучение

Космическое излучение — это поток элементарных частиц, излучаемых космическими объектами в результате их жизни или при взрывах звезд.

Источником космического излучения в основном являются взрывы «сверхновых», а также различные пульсары, черные дыры и другие объекты вселенной, в недрах которых идут термоядерные реакции. Благодаря непостижимо большим расстояниям до ближайших звезд, которые являются источниками космического излучения, происходит рассеивание космического излучения в пространстве и поэтому падает интенсивность (плотность) космического излучения. Проходя расстояния в тысячи световых лет, на своем пути космическое излучение взаимодействует с атомами межзвездного пространства, в основном это атомы водорода, и в процессе взаимодействия теряют часть своей энергии и меняют свое направление. Несмотря на это, до нашей планеты все равно со всех сторон доходит космическое излучений невероятно высоких энергий.

Космическое излучение состоит:

  • на 87% из протонов (протонное излучение)
  • на 12% из ядер атомов гелия (альфа излучение)
  • Оставшийся 1 % — это различные ядра атомов более тяжелых элементов, которые образовались при взрыве звезд, в ее недрах, за мгновение до взрыва
  • Так же в космическом излучении присутствуют в очень небольшом объеме — электроны, позитроны, фотоны и нейтрино

Все это продукты термоядерного синтеза происходящего в недрах звезд или последствия взрыва звезд.

Свой вклад в космическое излучение вносит ближайшая к нам звезда — Солнце. Энергия излучения от Солнца на несколько порядков ниже, чем энергия космического излучения, приходящего к нам из глубин космоса. Но плотность солнечной радиации выше плотности космического излучения, приходящего к нам из глубин космоса.

Состав излучения от солнца (солнечная радиация) отличается от основного космического излучения и состоит:

  • на 99% из протонов (протонное излучение)
  • на 1 % из ядер атомов гелия (альфа излучение)

Все это продукты термоядерного синтеза проходящего в недрах Солнца.

Как мы видим, космическое излучение состоит из наиболее опасных видов радиоактивного излучения — это протонное и альфа излучение.

Если Земля не обладала бы газовой атмосферой и магнитным полем, то шансов у биологических видов на выживание просто бы не было

Но благодаря магнитному полю Земли, большая часть космического излучения отклоняется магнитным полем и просто огибает Земную атмосферу проходя мимо. Оставшаяся часть космического излучения, проходя сквозь атмосферу Земли, взаимодействуя с атомами газов атмосферы, теряет свою энергию. В результате множественных атомных взаимодействий и превращений до поверхности Земли вместо космического излучения, состоящего из протонного и альфа излучения, доходят потоки менее опасных и обладающими на порядки меньшими энергиями — это потоки электронов, фотонов и мюонов.

Что получаем в итоге?

В итоге, космическое излучение проходя защитные механизмы Земли, не только теряет почти всю свою энергию, но и претерпевает физическое изменение в процессе ядерного взаимодействия с газами атмосферы, превращаясь в фактически безопасное, обладающее низкой энергией излучение в виде электронов (бета излучение), фотонов (гамма излучение)и мюонов.

В пункте 9.1 МУ 2.6.1.1088-02 указано нормативное значение эквивалентной дозы радиации получаемой человеком от космического излучения, это

0,4 мЗв/год или

400 мкЗв/год или

0,046 мкЗв/час

Гамма-распад (изомерный переход)

Основная статья: Изомерия атомных ядер

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьё время жизни измеряется микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Виды радиоактивного распада

Виды радиоактивного излучения

Ядра радиоактивных элементов самопроизвольно испускают 3 типа лучей, которые по-разному отклоняются в электромагнитном поле. Поток частиц, ведущих себя как положительно заряженные частицы, назвали альфа-лучами. Поток частиц, отклоняющихся, как отрицательно заряженные частицы, получил название бета-лучей.  Третий поток, на который поле не оказывало влияния, был назван гамма-излучением.

Альфа-распад

В процессе альфа-распада из ядра вылетают α-частицы, каждая из которых состоит из 2-х протонов и 2-х нейтронов и представляет собой ядро элемента гелия 42Не. В результате ядро, имеющее зарядовый номер Zи массовое число А превращается в ядро элемента с зарядовым числом Z – 2 и массовым числом А – 4. Элемент сдвигается на 2 клетки влево в таблице Менделеева.

Пример α-распада радия:

Бета-распад

Бета-излучение – это поток электронов. Откуда же они берутся в ядре, которое состоит из протонов и нейтронов?                                                                                                                                                   Оказывается, не несущий заряда нейтрон может превращаться в протон, излучая электрон. Но так как суммарная энергия возникших протона и электрона меньше энергии нейтрона, из которого они образовались, то возникло предположение, что часть энергии забирает какая-то частица. Эту частицу назвали нейтрино (от итальянского neutrino — нейтрончик). Её обнаружили только в 1953 г. Позднее физики определили, что существует несколько разновидностей нейтрино: электронное нейтрино/электронное антинейтрино, мюонное нейтрино/мюонное антинейтрино, тау-нейтрино/анти-тау-нейтрино.

При β-распаде образуется электронное антинейтрино.

Так как зарядовое число Zстановится равным Z + 1, то элемент сдвигается на единицу вправо в таблице Менделеева.

К примеру, в результате бета-распада изотоп тория превращается в элемент палладий:

Бета-распад называют также электронным распадом, или бета-минус-распадом.

В 30-е годы ХХ века физики открыли бета-плюс-распад, или позитронный распад, в результате которого из ядра вылетают античастица позитрон, имеющая положительный заряд, равный заряду электрона, и электронное нейтрино. Испуская позитрон, один из протонов превращается в нейтрон. Общее количество нуклонов в ядре остаётся прежним, поэтому его массовое число не изменяется. А зарядовое число ядра уменьшается на единицу. Элемент сдвигается влево на одну позицию в таблице Менделеева.

Гамма-распад, или изомерное излучение

Испускание фотона ядром атома

Подобно атому, ядро может находиться в разных возбуждённых состояниях. Исключение составляют ядра 1H, 2H, 3H и 3He.

При возврате из возбуждённого состояния в основное излучается γ-квант. Гамма-излучение сопровождает все типы радиоизлучений.

Ядер, излучающих только γ-частицы, в природе очень мало. Их называют изомерами. И если большинство ядер могут оставаться в возбуждённом состоянии наносекунды, то изомеры – сутки, месяцы и даже годы. Чаще всего изомеры переходят из возбуждённого состояния в основное, излучая только γ-кванты. Но для них возможен β- и α-распад. 

Гамма-кванты – это фотоны с высокой энергией. Таким образом, γ-излучение – это жёсткое, коротковолновое электромагнитное излучение. Его свойства близки к свойствам рентгеновского излучения, но проникающая способность гораздо выше.

Γамма-излучение не изменяет ни зарядового, ни массового чисел ядра.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий